The use of mixture models for estimating the size of an elusive population when capture rates vary among individuals has received strong attention from researchers involved in multiple system estimation. In this paper we propose a Bayesian semi-parametric approach by considering a truncated infinite dimensional Poisson mixture model for capture recapture count data. An application in official statistics regarding the estimate of the size of criminal populations is used to illus- trate the proposed methodology.

Bayesian population size estimation by repeated identifications of units. A semi-parametric mixture model approach / Tuoto, Tiziana; DI CECCO, Davide; Tancredi, Andrea. - (2021), pp. 405-410. (Intervento presentato al convegno SIS 2021 tenutosi a Pisa).

Bayesian population size estimation by repeated identifications of units. A semi-parametric mixture model approach

Tuoto Tiziana;Di Cecco Davide;Tancredi Andrea
2021

Abstract

The use of mixture models for estimating the size of an elusive population when capture rates vary among individuals has received strong attention from researchers involved in multiple system estimation. In this paper we propose a Bayesian semi-parametric approach by considering a truncated infinite dimensional Poisson mixture model for capture recapture count data. An application in official statistics regarding the estimate of the size of criminal populations is used to illus- trate the proposed methodology.
2021
SIS 2021
Criminal population; Capture-recapture; Dirichlet process mixture; Official statistics
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Bayesian population size estimation by repeated identifications of units. A semi-parametric mixture model approach / Tuoto, Tiziana; DI CECCO, Davide; Tancredi, Andrea. - (2021), pp. 405-410. (Intervento presentato al convegno SIS 2021 tenutosi a Pisa).
File allegati a questo prodotto
File Dimensione Formato  
Tuoto_Bayesian-population-size_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 869.87 kB
Formato Adobe PDF
869.87 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1553981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact