The use of mixture models for estimating the size of an elusive population when capture rates vary among individuals has received strong attention from researchers involved in multiple system estimation. In this paper we propose a Bayesian semi-parametric approach by considering a truncated infinite dimensional Poisson mixture model for capture recapture count data. An application in official statistics regarding the estimate of the size of criminal populations is used to illus- trate the proposed methodology.
Bayesian population size estimation by repeated identifications of units. A semi-parametric mixture model approach / Tuoto, Tiziana; DI CECCO, Davide; Tancredi, Andrea. - (2021), pp. 405-410. (Intervento presentato al convegno SIS 2021 tenutosi a Pisa).
Bayesian population size estimation by repeated identifications of units. A semi-parametric mixture model approach
Tuoto Tiziana;Di Cecco Davide;Tancredi Andrea
2021
Abstract
The use of mixture models for estimating the size of an elusive population when capture rates vary among individuals has received strong attention from researchers involved in multiple system estimation. In this paper we propose a Bayesian semi-parametric approach by considering a truncated infinite dimensional Poisson mixture model for capture recapture count data. An application in official statistics regarding the estimate of the size of criminal populations is used to illus- trate the proposed methodology.File | Dimensione | Formato | |
---|---|---|---|
Tuoto_Bayesian-population-size_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
869.87 kB
Formato
Adobe PDF
|
869.87 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.