Malaria, caused by Plasmodium parasites, is a major global public health problem. To assist an understanding of malaria pathogenesis, including drug resistance, there is a need for the timely detection of underlying genetic mutations and their spread. With the increasing use of whole-genome sequencing (WGS) of Plasmodium DNA, the potential of deep learning models to detect loci under recent positive selection, historically signals of drug resistance, was evaluated.

Using deep learning to identify recent positive selection in malaria parasite sequence data / Deelder, Wouter; Benavente, Ernest Diez; Phelan, Jody; Manko, Emilia; Campino, Susana; Palla, Luigi; Clark, Taane G. - In: MALARIA JOURNAL. - ISSN 1475-2875. - 20:1(2021), pp. 1-9. [10.1186/s12936-021-03788-x]

Using deep learning to identify recent positive selection in malaria parasite sequence data

Palla, Luigi;
2021

Abstract

Malaria, caused by Plasmodium parasites, is a major global public health problem. To assist an understanding of malaria pathogenesis, including drug resistance, there is a need for the timely detection of underlying genetic mutations and their spread. With the increasing use of whole-genome sequencing (WGS) of Plasmodium DNA, the potential of deep learning models to detect loci under recent positive selection, historically signals of drug resistance, was evaluated.
2021
drug resistance; machine learning; plasmodium falciparum; plasmodium vivax; population genomics; positive selection
01 Pubblicazione su rivista::01a Articolo in rivista
Using deep learning to identify recent positive selection in malaria parasite sequence data / Deelder, Wouter; Benavente, Ernest Diez; Phelan, Jody; Manko, Emilia; Campino, Susana; Palla, Luigi; Clark, Taane G. - In: MALARIA JOURNAL. - ISSN 1475-2875. - 20:1(2021), pp. 1-9. [10.1186/s12936-021-03788-x]
File allegati a questo prodotto
File Dimensione Formato  
Deelder_Using_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 930.88 kB
Formato Adobe PDF
930.88 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1553749
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 15
social impact