Individual-specific, time-constant, random effects are often introduced in model specification to account for dependence and/or omitted covariates in regression models for longitudinal data. This approach has been frequently criticized as it would not be robust to the presence of correlation between the observed and the unobserved covariates. Often, this is felt as a reason to chooose the fixed effect estimator instead. Starting from the so-called correlated effect approach, we argue that the conditional random effect distribution may be estimated non-parametrically by using a discrete distribution, leading to a general solution to the problem. The effectivenes of the proposed approach is shown via a large scale simulation study.

Finite mixtures of regression models for longitudinal data / Alfo', Marco; Rocci, Roberto. - (2021), pp. 942-947. (Intervento presentato al convegno SIS2001 tenutosi a Pisa (virtuale online)).

Finite mixtures of regression models for longitudinal data

Marco Alfò
Co-primo
;
Roberto Rocci
Co-primo
2021

Abstract

Individual-specific, time-constant, random effects are often introduced in model specification to account for dependence and/or omitted covariates in regression models for longitudinal data. This approach has been frequently criticized as it would not be robust to the presence of correlation between the observed and the unobserved covariates. Often, this is felt as a reason to chooose the fixed effect estimator instead. Starting from the so-called correlated effect approach, we argue that the conditional random effect distribution may be estimated non-parametrically by using a discrete distribution, leading to a general solution to the problem. The effectivenes of the proposed approach is shown via a large scale simulation study.
2021
SIS2001
longitudinal data; omitted variables; dependence; random effect models; correlation bias; nonparametric MLe
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Finite mixtures of regression models for longitudinal data / Alfo', Marco; Rocci, Roberto. - (2021), pp. 942-947. (Intervento presentato al convegno SIS2001 tenutosi a Pisa (virtuale online)).
File allegati a questo prodotto
File Dimensione Formato  
Alfò_Finite-mixtures_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 350.83 kB
Formato Adobe PDF
350.83 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1553562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact