We have developed an artificial neural network prediction model for end-stage kidney disease (ESKD) in patients with primary immunoglobulin A nephropathy (IgAN) using a retrospective cohort of 948 patients with IgAN. Our tool is based on a two-step procedure of a classifier model that predicts ESKD, and a regression model that predicts development of ESKD over time. The classifier model showed a performance value of 0.82 (area under the receiver operating characteristic curve) in patients with a follow-up of five years, which improved to 0.89 at the ten-year follow-up. Both models had a higher recall rate, which indicated the practicality of the tool. The regression model showed a mean absolute error of 1.78 years and a root mean square error of 2.15 years. Testing in an independent cohort of 167patients with IgAN found successful results for 91% of the patients. Comparison of our system with other mathematical models showed the highest discriminant Harrell C index at five- and ten-years follow-up (81% and 86%, respectively), paralleling the lowest Akaike information criterion values (355.01 and 269.56, respectively). Moreover, our system was the best calibrated model indicating that the predicted and observed outcome probabilities did not significantly differ. Finally, the dynamic discrimination indexes of our artificial neural network, expressed as the weighted average of time-dependent areas under the curve calculated at one and two years, were 0.80 and 0.79, respectively. Similar results were observed over a 25-year follow-up period. Thus, our tool identified individuals who were at a high risk of developing ESKD due to IgAN and predicted the time-to-event endpoint. Accurate prediction is an important step toward introduction of a therapeutic strategy for improving clinical outcomes.

Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy / Schena, F. P.; Anelli, V. W.; Trotta, J.; Di Noia, T.; Manno, C.; Tripepi, G.; D'Arrigo, G.; Chesnaye, N. C.; Russo, M. L.; Stangou, M.; Papagianni, A.; Zoccali, C.; Tesar, V.; Coppo, R.; Tesar, V.; Maixnerova, D.; Lundberg, S.; Gesualdo, L.; Emma, F.; Fuiano, L.; Beltrame, G.; Rollino, C.; Coppo, R.; Amore, A.; Camilla, R.; Peruzzi, L.; Praga, M.; Feriozzi, S.; Polci, R.; Segoloni, G.; Colla, L.; Pani, A.; Angioi, A.; Piras, L.; Feehally, J.; Cancarini, G.; Ravera, S.; Durlik, M.; Moggia, E.; Ballarin, J.; Di Giulio, S.; Pugliese, F.; Serriello, I.; Caliskan, Y.; Sever, M.; Kilicaslan, I.; Locatelli, F.; Del Vecchio, L.; Wetzels, J. F. M.; Peters, H.; Berg, U.; Carvalho, F.; da Costa Ferreira, A. C.; Maggio, M.; Wiecek, A.; Ots-Rosenberg, M.; Magistroni, R.; Topaloglu, R.; Bilginer, Y.; D'Amico, M.; Stangou, M.; Giacchino, F.; Goumenos, D.; Papasotiriou, M.; Galesic, K.; Toric, L.; Geddes, C.; Siamopoulos, K.; Balafa, O.; Galliani, M.; Stratta, P.; Quaglia, M.; Bergia, R.; Cravero, R.; Salvadori, M.; Cirami, L.; Fellstrom, B.; Smerud, H. K.; Ferrario, F.; Stellato, T.; Egido, J.; Martin, C.; Floege, J.; Eitner, F.; Rauen, T.; Lupo, A.; Bernich, P.; Mene, P.; Morosetti, M.; van Kooten, C.; Rabelink, T.; Reinders, M. E. J.; Grinyo, J. M. B.; Cusinato, S.; Benozzi, L.; Savoldi, S.; Licata, C.; Mizerska-Wasiak, M.; Roszkowska-Blaim, M.; Martina, G.; Messuerotti, A.; Canton, A. D.; Esposito, C.; Migotto, C.; Triolo, G.; Mariano, F.; Pozzi, C.; Boero, R.; Mazzucco, ; Giannakakis, C.; Honsova, E.; Sundelin, B.; Di Palma, A. M.; Gutierrez, E.; Asunis, A. M.; Barratt, J.; Tardanico, R.; Perkowska-Ptasinska, A.; Terroba, J. A.; Fortunato, M.; Pantzaki, A.; Ozluk, Y.; Steenbergen, E.; Soderberg, M.; Riispere, Z.; Furci, L.; Orhan, D.; Kipgen, D.; Casartelli, D.; Galesicljubanovic, D.; Gakiopoulou, H.; Bertoni, E.; Ortiz, P. C.; Karkoszka, H.; Groene, H. J.; Stoppacciaro, A.; Bajema, I.; Bruijn, J.; Fulladosaoliveras, X.; Maldyk, J.; Ioachim, E.; Abbrescia, D.; Kouri, N.; Scolari, F.; Delbarba, E.; Bonomini, M.; Piscitani, L.; Stallone, G.; Infante, B.; Godeas, G.; Madio, D.; Biancone, L.; Campagna, M.; Zaza, G.; Squarzoni, I.; Cangemi, C.. - In: KIDNEY INTERNATIONAL. - ISSN 0085-2538. - 99:5(2021), pp. 1179-1188. [10.1016/j.kint.2020.07.046]

Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy

Serriello I.;Mene P.;Giannakakis C.;Stoppacciaro A.;
2021

Abstract

We have developed an artificial neural network prediction model for end-stage kidney disease (ESKD) in patients with primary immunoglobulin A nephropathy (IgAN) using a retrospective cohort of 948 patients with IgAN. Our tool is based on a two-step procedure of a classifier model that predicts ESKD, and a regression model that predicts development of ESKD over time. The classifier model showed a performance value of 0.82 (area under the receiver operating characteristic curve) in patients with a follow-up of five years, which improved to 0.89 at the ten-year follow-up. Both models had a higher recall rate, which indicated the practicality of the tool. The regression model showed a mean absolute error of 1.78 years and a root mean square error of 2.15 years. Testing in an independent cohort of 167patients with IgAN found successful results for 91% of the patients. Comparison of our system with other mathematical models showed the highest discriminant Harrell C index at five- and ten-years follow-up (81% and 86%, respectively), paralleling the lowest Akaike information criterion values (355.01 and 269.56, respectively). Moreover, our system was the best calibrated model indicating that the predicted and observed outcome probabilities did not significantly differ. Finally, the dynamic discrimination indexes of our artificial neural network, expressed as the weighted average of time-dependent areas under the curve calculated at one and two years, were 0.80 and 0.79, respectively. Similar results were observed over a 25-year follow-up period. Thus, our tool identified individuals who were at a high risk of developing ESKD due to IgAN and predicted the time-to-event endpoint. Accurate prediction is an important step toward introduction of a therapeutic strategy for improving clinical outcomes.
2021
artificial neural networks; clinical decision support system; end-stage kidney disease; IgA nephropathy; joint models; machine learning
01 Pubblicazione su rivista::01a Articolo in rivista
Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy / Schena, F. P.; Anelli, V. W.; Trotta, J.; Di Noia, T.; Manno, C.; Tripepi, G.; D'Arrigo, G.; Chesnaye, N. C.; Russo, M. L.; Stangou, M.; Papagianni, A.; Zoccali, C.; Tesar, V.; Coppo, R.; Tesar, V.; Maixnerova, D.; Lundberg, S.; Gesualdo, L.; Emma, F.; Fuiano, L.; Beltrame, G.; Rollino, C.; Coppo, R.; Amore, A.; Camilla, R.; Peruzzi, L.; Praga, M.; Feriozzi, S.; Polci, R.; Segoloni, G.; Colla, L.; Pani, A.; Angioi, A.; Piras, L.; Feehally, J.; Cancarini, G.; Ravera, S.; Durlik, M.; Moggia, E.; Ballarin, J.; Di Giulio, S.; Pugliese, F.; Serriello, I.; Caliskan, Y.; Sever, M.; Kilicaslan, I.; Locatelli, F.; Del Vecchio, L.; Wetzels, J. F. M.; Peters, H.; Berg, U.; Carvalho, F.; da Costa Ferreira, A. C.; Maggio, M.; Wiecek, A.; Ots-Rosenberg, M.; Magistroni, R.; Topaloglu, R.; Bilginer, Y.; D'Amico, M.; Stangou, M.; Giacchino, F.; Goumenos, D.; Papasotiriou, M.; Galesic, K.; Toric, L.; Geddes, C.; Siamopoulos, K.; Balafa, O.; Galliani, M.; Stratta, P.; Quaglia, M.; Bergia, R.; Cravero, R.; Salvadori, M.; Cirami, L.; Fellstrom, B.; Smerud, H. K.; Ferrario, F.; Stellato, T.; Egido, J.; Martin, C.; Floege, J.; Eitner, F.; Rauen, T.; Lupo, A.; Bernich, P.; Mene, P.; Morosetti, M.; van Kooten, C.; Rabelink, T.; Reinders, M. E. J.; Grinyo, J. M. B.; Cusinato, S.; Benozzi, L.; Savoldi, S.; Licata, C.; Mizerska-Wasiak, M.; Roszkowska-Blaim, M.; Martina, G.; Messuerotti, A.; Canton, A. D.; Esposito, C.; Migotto, C.; Triolo, G.; Mariano, F.; Pozzi, C.; Boero, R.; Mazzucco, ; Giannakakis, C.; Honsova, E.; Sundelin, B.; Di Palma, A. M.; Gutierrez, E.; Asunis, A. M.; Barratt, J.; Tardanico, R.; Perkowska-Ptasinska, A.; Terroba, J. A.; Fortunato, M.; Pantzaki, A.; Ozluk, Y.; Steenbergen, E.; Soderberg, M.; Riispere, Z.; Furci, L.; Orhan, D.; Kipgen, D.; Casartelli, D.; Galesicljubanovic, D.; Gakiopoulou, H.; Bertoni, E.; Ortiz, P. C.; Karkoszka, H.; Groene, H. J.; Stoppacciaro, A.; Bajema, I.; Bruijn, J.; Fulladosaoliveras, X.; Maldyk, J.; Ioachim, E.; Abbrescia, D.; Kouri, N.; Scolari, F.; Delbarba, E.; Bonomini, M.; Piscitani, L.; Stallone, G.; Infante, B.; Godeas, G.; Madio, D.; Biancone, L.; Campagna, M.; Zaza, G.; Squarzoni, I.; Cangemi, C.. - In: KIDNEY INTERNATIONAL. - ISSN 0085-2538. - 99:5(2021), pp. 1179-1188. [10.1016/j.kint.2020.07.046]
File allegati a questo prodotto
File Dimensione Formato  
Schena_Development_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 509.13 kB
Formato Adobe PDF
509.13 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1553162
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 56
social impact