This work introduces a model-based biclustering approach for discrete multivariate longitudinal data. The proposed model considers a finite mixture of generalized linear models to cluster units and, within each mixture component, a flexible and parsimonious parameterization of the corresponding canonical parameter to cluster variables evolving in a similar manner across time. Model parameter estimates are obtained through an Expectation Maximization (EM) type algorithm and the performance of the proposed model are shown on both simulated and real dataset.
Biclustering longitudinal trajectories through a model-based approach / Martella, Francesca; Alfo', Marco; francesca marino, Maria. - (2021), pp. 1239-1244. (Intervento presentato al convegno 51th Scientific Meeting on the Italian Statistical Society tenutosi a Pisa, Italia).
Biclustering longitudinal trajectories through a model-based approach
francesca martella
;marco alfò;
2021
Abstract
This work introduces a model-based biclustering approach for discrete multivariate longitudinal data. The proposed model considers a finite mixture of generalized linear models to cluster units and, within each mixture component, a flexible and parsimonious parameterization of the corresponding canonical parameter to cluster variables evolving in a similar manner across time. Model parameter estimates are obtained through an Expectation Maximization (EM) type algorithm and the performance of the proposed model are shown on both simulated and real dataset.File | Dimensione | Formato | |
---|---|---|---|
Martella_Biclustering-longitudinal-trajectories_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
220.9 kB
Formato
Adobe PDF
|
220.9 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.