Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states1–5. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations6–8. Evidence for the existence of a flat band comes from local tunnelling spectroscopy9–13 and electronic compressibility measurements14, which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging15. Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.

Observation of flat bands in twisted bilayer graphene / Lisi, S.; Lu, X.; Benschop, T.; de Jong, T. A.; Stepanov, P.; Duran, J. R.; Margot, F.; Cucchi, I.; Cappelli, E.; Hunter, A.; Tamai, A.; Kandyba, V.; Giampietri, A.; Barinov, A.; Jobst, J.; Stalman, V.; Leeuwenhoek, M.; Watanabe, K.; Taniguchi, T.; Rademaker, L.; van der Molen, S. J.; Allan, M. P.; Efetov, D. K.; Baumberger, F.. - In: NATURE PHYSICS. - ISSN 1745-2473. - 17:2(2021), pp. 189-193. [10.1038/s41567-020-01041-x]

Observation of flat bands in twisted bilayer graphene

Giampietri A.;
2021

Abstract

Transport experiments in twisted bilayer graphene have revealed multiple superconducting domes separated by correlated insulating states1–5. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as was predicted by band structure calculations6–8. Evidence for the existence of a flat band comes from local tunnelling spectroscopy9–13 and electronic compressibility measurements14, which report two or more sharp peaks in the density of states that may be associated with closely spaced Van Hove singularities. However, direct momentum-resolved measurements have proved to be challenging15. Here, we combine different imaging techniques and angle-resolved photoemission with simultaneous real- and momentum-space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with a homogeneous twist angle that support a flat band with a spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands, which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.
2021
Flat Bands; Twisted Bilayer Graphene; Magic Angle; ARPES
01 Pubblicazione su rivista::01a Articolo in rivista
Observation of flat bands in twisted bilayer graphene / Lisi, S.; Lu, X.; Benschop, T.; de Jong, T. A.; Stepanov, P.; Duran, J. R.; Margot, F.; Cucchi, I.; Cappelli, E.; Hunter, A.; Tamai, A.; Kandyba, V.; Giampietri, A.; Barinov, A.; Jobst, J.; Stalman, V.; Leeuwenhoek, M.; Watanabe, K.; Taniguchi, T.; Rademaker, L.; van der Molen, S. J.; Allan, M. P.; Efetov, D. K.; Baumberger, F.. - In: NATURE PHYSICS. - ISSN 1745-2473. - 17:2(2021), pp. 189-193. [10.1038/s41567-020-01041-x]
File allegati a questo prodotto
File Dimensione Formato  
Lisi_Observation_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1550099
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 178
  • ???jsp.display-item.citation.isi??? 175
social impact