The ability to directly monitor the states of electrons in modern field-effect devices—for example, imaging local changes in the electrical potential, Fermi level and band structure as a gate voltage is applied—could transform our understanding of the physics and function of a device. Here we show that micrometre-scale, angle-resolved photoemission spectroscopy1–3 (microARPES) applied to two-dimensional van der Waals heterostructures4 affords this ability. In two-terminal graphene devices, we observe a shift of the Fermi level across the Dirac point, with no detectable change in the dispersion, as a gate voltage is applied. In two-dimensional semiconductor devices, we see the conduction-band edge appear as electrons accumulate, thereby firmly establishing the energy and momentum of the edge. In the case of monolayer tungsten diselenide, we observe that the bandgap is renormalized downwards by several hundreds of millielectronvolts—approaching the exciton energy—as the electrostatic doping increases. Both optical spectroscopy and microARPES can be carried out on a single device, allowing definitive studies of the relationship between gate-controlled electronic and optical properties. The technique provides a powerful way to study not only fundamental semiconductor physics, but also intriguing phenomena such as topological transitions5 and many-body spectral reconstructions under electrical control.

Visualizing electrostatic gating effects in two-dimensional heterostructures / Nguyen, P. V.; Teutsch, N. C.; Wilson, N. P.; Kahn, J.; Xia, X.; Graham, A. J.; Kandyba, V.; Giampietri, A.; Barinov, A.; Constantinescu, G. C.; Yeung, N.; Hine, N. D. M.; Xu, X.; Cobden, D. H.; Wilson, N. R.. - In: NATURE. - ISSN 0028-0836. - 572:7768(2019), pp. 220-223. [10.1038/s41586-019-1402-1]

Visualizing electrostatic gating effects in two-dimensional heterostructures

Giampietri A.;
2019

Abstract

The ability to directly monitor the states of electrons in modern field-effect devices—for example, imaging local changes in the electrical potential, Fermi level and band structure as a gate voltage is applied—could transform our understanding of the physics and function of a device. Here we show that micrometre-scale, angle-resolved photoemission spectroscopy1–3 (microARPES) applied to two-dimensional van der Waals heterostructures4 affords this ability. In two-terminal graphene devices, we observe a shift of the Fermi level across the Dirac point, with no detectable change in the dispersion, as a gate voltage is applied. In two-dimensional semiconductor devices, we see the conduction-band edge appear as electrons accumulate, thereby firmly establishing the energy and momentum of the edge. In the case of monolayer tungsten diselenide, we observe that the bandgap is renormalized downwards by several hundreds of millielectronvolts—approaching the exciton energy—as the electrostatic doping increases. Both optical spectroscopy and microARPES can be carried out on a single device, allowing definitive studies of the relationship between gate-controlled electronic and optical properties. The technique provides a powerful way to study not only fundamental semiconductor physics, but also intriguing phenomena such as topological transitions5 and many-body spectral reconstructions under electrical control.
2019
WSe2; Gating, ARPES
01 Pubblicazione su rivista::01f Lettera, Nota
Visualizing electrostatic gating effects in two-dimensional heterostructures / Nguyen, P. V.; Teutsch, N. C.; Wilson, N. P.; Kahn, J.; Xia, X.; Graham, A. J.; Kandyba, V.; Giampietri, A.; Barinov, A.; Constantinescu, G. C.; Yeung, N.; Hine, N. D. M.; Xu, X.; Cobden, D. H.; Wilson, N. R.. - In: NATURE. - ISSN 0028-0836. - 572:7768(2019), pp. 220-223. [10.1038/s41586-019-1402-1]
File allegati a questo prodotto
File Dimensione Formato  
Nguyen_Visualizing electrostatic_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.49 MB
Formato Adobe PDF
6.49 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1550096
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 128
  • ???jsp.display-item.citation.isi??? 126
social impact