The experimental data from the performance of a 300 W poly and a 300 W mono crystalline solar module are gathered during a year, and then, it is employed to evaluate the relation between the standard deviation of temperature distribution on the surface of module and error in prediction of different simulation approaches. The values of error in prediction of working temperature, current, voltage, and power, as the four main key performance parameters of a solar module are obtained for nominal operating cell temperature, nominal module operating temperature, as well as one, two, and three dimensional numerical modeling approaches, as the most popular methods in the literature during the annual performance. The image-processing refined pictures obtained from a high-resolution thermal imaging camera are also employed for the calculation of the standard deviation of temperature distribution. The results demonstrate that the methods used in the engineering applications, like nominal operating cell temperature and nominal module operating temperature, lose their accuracy at the high level of the standard deviation of temperature distribution, i.e., around 15 °C. In addition, voltage and temperature are found as the parameters with the lowest and highest dependencies on the standard deviation of temperature distribution. The maximum values of error for prediction of power by one, two, and three dimensional numerical modeling approaches are also 14.4, 11.4, and 9.6% for the poly crystalline module, and 8.5, 6.3, and 5.2% for the mono type, respectively.
Comparative study of temperature distribution impact on prediction accuracy of simulation approaches for poly and mono crystalline solar modules / Sohani, A.; Sayyaadi, H.; Moradi, M. H.; Nastasi, B.; Groppi, D.; Zabihigivi, M.; Astiaso Garcia, D.. - In: ENERGY CONVERSION AND MANAGEMENT. - ISSN 0196-8904. - 239:(2021). [10.1016/j.enconman.2021.114221]
Comparative study of temperature distribution impact on prediction accuracy of simulation approaches for poly and mono crystalline solar modules
Nastasi B.
;Groppi D.;Astiaso Garcia D.
2021
Abstract
The experimental data from the performance of a 300 W poly and a 300 W mono crystalline solar module are gathered during a year, and then, it is employed to evaluate the relation between the standard deviation of temperature distribution on the surface of module and error in prediction of different simulation approaches. The values of error in prediction of working temperature, current, voltage, and power, as the four main key performance parameters of a solar module are obtained for nominal operating cell temperature, nominal module operating temperature, as well as one, two, and three dimensional numerical modeling approaches, as the most popular methods in the literature during the annual performance. The image-processing refined pictures obtained from a high-resolution thermal imaging camera are also employed for the calculation of the standard deviation of temperature distribution. The results demonstrate that the methods used in the engineering applications, like nominal operating cell temperature and nominal module operating temperature, lose their accuracy at the high level of the standard deviation of temperature distribution, i.e., around 15 °C. In addition, voltage and temperature are found as the parameters with the lowest and highest dependencies on the standard deviation of temperature distribution. The maximum values of error for prediction of power by one, two, and three dimensional numerical modeling approaches are also 14.4, 11.4, and 9.6% for the poly crystalline module, and 8.5, 6.3, and 5.2% for the mono type, respectively.File | Dimensione | Formato | |
---|---|---|---|
Sohani_Comparative_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.79 MB
Formato
Adobe PDF
|
3.79 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.