In the present study separation of enantiomers of some chiral neutral, basic and weakly acidic analytes was investigated on the chiral stationary phase (CSP) made by covalent immobilization of amylose tris(3-chloro-5-methylphenylcarbamate) onto aminopropylsilanized (APS) silica in nano-liquid chromatography (nano-LC) in aqueous methanol or acetonitrile mixtures. It has been shown that similar to high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) this chiral selector is useful for separation of enantiomers of neutral, basic and acidic analytes also in nano-LC. In comparison to our previous research, in which the chiral selector (CS) was bonded on native silica, in this study, the CS was immobilized on APS silica in order to improve chromatographic performance towards basic analytes. In fact, some improvement was observed and surprisingly not only for basic but also for neutral and acidic analytes. Again, quite unexpectedly almost no electroosmotic flow (EOF) was observed in capillaries packed with ca. 20% (w/w) amylose tris(3-chloro-5-methylphenylcarbamate) immobilized onto APS silica although the same APS silica before attachment of chiral selector exhibited significant EOF. In order to generate EOF in the capillaries with the CSP and enable capillary electrochromatographic (CEC) experiment on it, the short segment of the capillary column was packed with APS silica without chiral selector. The EOF in such capillary enabled CEC experiment and some preliminary results are reported here.

Further study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography / D'Orazio, G.; Fanali, C.; Fanali, S.; Gentili, A.; Karchkhadze, M.; Chankvetadze, B.. - In: JOURNAL OF CHROMATOGRAPHY A. - ISSN 0021-9673. - 1623:(2020), pp. 1-8. [10.1016/j.chroma.2020.461213]

Further study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography

Gentili A.
Membro del Collaboration Group
;
2020

Abstract

In the present study separation of enantiomers of some chiral neutral, basic and weakly acidic analytes was investigated on the chiral stationary phase (CSP) made by covalent immobilization of amylose tris(3-chloro-5-methylphenylcarbamate) onto aminopropylsilanized (APS) silica in nano-liquid chromatography (nano-LC) in aqueous methanol or acetonitrile mixtures. It has been shown that similar to high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) this chiral selector is useful for separation of enantiomers of neutral, basic and acidic analytes also in nano-LC. In comparison to our previous research, in which the chiral selector (CS) was bonded on native silica, in this study, the CS was immobilized on APS silica in order to improve chromatographic performance towards basic analytes. In fact, some improvement was observed and surprisingly not only for basic but also for neutral and acidic analytes. Again, quite unexpectedly almost no electroosmotic flow (EOF) was observed in capillaries packed with ca. 20% (w/w) amylose tris(3-chloro-5-methylphenylcarbamate) immobilized onto APS silica although the same APS silica before attachment of chiral selector exhibited significant EOF. In order to generate EOF in the capillaries with the CSP and enable capillary electrochromatographic (CEC) experiment on it, the short segment of the capillary column was packed with APS silica without chiral selector. The EOF in such capillary enabled CEC experiment and some preliminary results are reported here.
2020
amylose tris (3-chloro-5-methylphenylcarbamate); capillary electrochromatography; covalently immobilized polysaccharide-based chiral stationary phase; enantioseparations; nano-liquid chromatography; acids; amylose; capillary electrochromatography; chromatography, liquid; flavanones; phenylcarbamates; silicon dioxide; stereoisomerism
01 Pubblicazione su rivista::01a Articolo in rivista
Further study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography / D'Orazio, G.; Fanali, C.; Fanali, S.; Gentili, A.; Karchkhadze, M.; Chankvetadze, B.. - In: JOURNAL OF CHROMATOGRAPHY A. - ISSN 0021-9673. - 1623:(2020), pp. 1-8. [10.1016/j.chroma.2020.461213]
File allegati a questo prodotto
File Dimensione Formato  
DOrazioFurther_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1543059
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact