This work has the ambition generate an algorithm able to clearly identify buried antipersonnel mines from GPR data acquisitions. The algorithm is generated as a combination of a convolutional neural network (CNN) and a symbolic data analysis (SDA) process. The CNN is a powerful tool to automatically detect buried objects with even small metal content; the SDA reduces the probability of false positives, i.e. objects identified as mines, even though they are not and has the great advantage of not requiring a predefined dataset. Experimental campaign, conducted on real terrain, has proven the validity of the presented algorithm.
Demining war scenarios: a project based on new technologies / Mezzani, Federica; Pepe, Gianluca; Roveri, Nicola; Carcaterra, Antonio; Solferini, Stefano. - 1:(2021), pp. 889-900. (Intervento presentato al convegno 11th International Conference on Structural Dynamics, EURODYN 2020 tenutosi a Virtual, Athens, Greece).
Demining war scenarios: a project based on new technologies
Federica Mezzani
Primo
;Gianluca Pepe;Nicola Roveri;Antonio Carcaterra;
2021
Abstract
This work has the ambition generate an algorithm able to clearly identify buried antipersonnel mines from GPR data acquisitions. The algorithm is generated as a combination of a convolutional neural network (CNN) and a symbolic data analysis (SDA) process. The CNN is a powerful tool to automatically detect buried objects with even small metal content; the SDA reduces the probability of false positives, i.e. objects identified as mines, even though they are not and has the great advantage of not requiring a predefined dataset. Experimental campaign, conducted on real terrain, has proven the validity of the presented algorithm.File | Dimensione | Formato | |
---|---|---|---|
Mezzani_preprint_deming-war_2021.pdf
solo gestori archivio
Note: https://www.easdprocedia.org/conferences/easd-conferences/eurodyn-2020/9070
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Contatta l'autore |
Mezzani_Deming-war_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.