Biomonitoring is a potent tool to control the health risk of people occupationally and non-occupationally exposed. The latest trend in bioanalytical chemistry is to develop quick, cheap, easy, safe and reliable green analytical procedures to analyse a large number of chemicals in easily accessible biomatrices such as urine. In this paper, a new dispersive liquid–liquid microextraction (DLLME) procedure, conceived to treat urine samples and based on the use of a low transition temperature mixture (LTTM), was developed and validated to analyse twenty pesticides commonly used in farm practises. The LTTM was composed of choline chloride and sesamol in molar ratio 1:3 (ChCl:Ses 1:3); its characterization via differential scanning calorimetry identified it as an LTTM and not as a deep eutectic solvent due to the occurrence of a glass transition at -71 °C. The prepared mixture was used as the extraction solvent in the DLLME procedure, while ethyl acetate as the dispersing solvent. The salting out effect (50 mg mL−1 of NaCl in a diluted urine sample) improved the separation phase and the analyte transfer to the extractant. Due to the high ionic strength and despite the density of ChCl:Ses 1:3 (1.25 g mL−1), the LTTM layer floated on the top of the sample solution after centrifugation. All extracts were analysed by high-performance liquid chromatography coupled to mass spectrometry. After optimization and validation of the whole method, lower limits of quantitation were in the range of 0.02 – 0.76 µg L−1. Extraction recoveries spanned from 50 to 101 % depending on the spike level and analytes. Precision and accuracy ranges were 3-18% and 5-20%, respectively. The extraction procedure was also compared with other methods, showing to be advantageous for rapidity, simplicity, efficiency, and low cost. Finally, urine samples from ten volunteers were effectively analysed using the developed method.
Dispersive liquid-liquid microextraction using a low transition temperature mixture and liquid chromatography-mass spectrometry analysis of pesticides in urine samples / Gallo, Valeria; Tomai, Pierpaolo; Gherardi, Monica; Fanali, Chiara; De Gara, Laura; D'Orazio, Giovanni; Gentili, Alessandra. - In: JOURNAL OF CHROMATOGRAPHY A. - ISSN 1873-3778. - 1642:(2021), pp. 1-8. [10.1016/j.chroma.2021.462036]
Dispersive liquid-liquid microextraction using a low transition temperature mixture and liquid chromatography-mass spectrometry analysis of pesticides in urine samples
Tomai, Pierpaolo;Gentili, Alessandra
2021
Abstract
Biomonitoring is a potent tool to control the health risk of people occupationally and non-occupationally exposed. The latest trend in bioanalytical chemistry is to develop quick, cheap, easy, safe and reliable green analytical procedures to analyse a large number of chemicals in easily accessible biomatrices such as urine. In this paper, a new dispersive liquid–liquid microextraction (DLLME) procedure, conceived to treat urine samples and based on the use of a low transition temperature mixture (LTTM), was developed and validated to analyse twenty pesticides commonly used in farm practises. The LTTM was composed of choline chloride and sesamol in molar ratio 1:3 (ChCl:Ses 1:3); its characterization via differential scanning calorimetry identified it as an LTTM and not as a deep eutectic solvent due to the occurrence of a glass transition at -71 °C. The prepared mixture was used as the extraction solvent in the DLLME procedure, while ethyl acetate as the dispersing solvent. The salting out effect (50 mg mL−1 of NaCl in a diluted urine sample) improved the separation phase and the analyte transfer to the extractant. Due to the high ionic strength and despite the density of ChCl:Ses 1:3 (1.25 g mL−1), the LTTM layer floated on the top of the sample solution after centrifugation. All extracts were analysed by high-performance liquid chromatography coupled to mass spectrometry. After optimization and validation of the whole method, lower limits of quantitation were in the range of 0.02 – 0.76 µg L−1. Extraction recoveries spanned from 50 to 101 % depending on the spike level and analytes. Precision and accuracy ranges were 3-18% and 5-20%, respectively. The extraction procedure was also compared with other methods, showing to be advantageous for rapidity, simplicity, efficiency, and low cost. Finally, urine samples from ten volunteers were effectively analysed using the developed method.File | Dimensione | Formato | |
---|---|---|---|
Gallo_Dispersive_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.