The aim of this paper is to introduce an adaptive penalized estimator for identifying the true reduced parametric model under the sparsity assumption. In particular, we deal with the framework where the unpenalized estimator of the structural parameters needs simultaneously multiple rates of convergence (i.e., the so-called mixed-rates asymptotic behavior). We introduce a bridge-type estimator by taking into account penalty functions involving ℓq norms (0 < q ≤ 1). We prove that the proposed regularized estimator satisfies the oracle properties. Our approach is useful for the estimation of stochastic differential equations in the parametric sparse setting. More precisely, under the high-frequency observation scheme, we apply our methodology to an ergodic diffusion and introduce a procedure for the selection of the tuning parameters. Furthermore, the paper contains a simulation study as well as a real data prediction in order to assess about the performance of the proposed bridge estimator.
Regularized bridge-type estimation with multiple penalties / De Gregorio, A.; Iafrate, F.. - In: ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS. - ISSN 0020-3157. - 73:(2021), pp. 921-951. [10.1007/s10463-020-00769-w]
Regularized bridge-type estimation with multiple penalties
De Gregorio A.
Primo
;
2021
Abstract
The aim of this paper is to introduce an adaptive penalized estimator for identifying the true reduced parametric model under the sparsity assumption. In particular, we deal with the framework where the unpenalized estimator of the structural parameters needs simultaneously multiple rates of convergence (i.e., the so-called mixed-rates asymptotic behavior). We introduce a bridge-type estimator by taking into account penalty functions involving ℓq norms (0 < q ≤ 1). We prove that the proposed regularized estimator satisfies the oracle properties. Our approach is useful for the estimation of stochastic differential equations in the parametric sparse setting. More precisely, under the high-frequency observation scheme, we apply our methodology to an ergodic diffusion and introduce a procedure for the selection of the tuning parameters. Furthermore, the paper contains a simulation study as well as a real data prediction in order to assess about the performance of the proposed bridge estimator.File | Dimensione | Formato | |
---|---|---|---|
De Gregorio_regularized-bridge_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.