In this paper we prove the convergence of a suitable particle system towards the BGK model. More precisely, we consider an interacting stochastic particle system in which each particle can instantaneously thermalize locally. We show that, under a suitable scaling limit, propagation of chaos does hold and the one-particle distribution function converges to the solution of the BGK equation.
Particle Approximation of the BGK Equation / Butta', P.; Hauray, M.; Pulvirenti, M.. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 240:2(2021), pp. 785-808. [10.1007/s00205-021-01621-y]
Particle Approximation of the BGK Equation
Butta' P.
;Pulvirenti M.
2021
Abstract
In this paper we prove the convergence of a suitable particle system towards the BGK model. More precisely, we consider an interacting stochastic particle system in which each particle can instantaneously thermalize locally. We show that, under a suitable scaling limit, propagation of chaos does hold and the one-particle distribution function converges to the solution of the BGK equation.File | Dimensione | Formato | |
---|---|---|---|
Buttà_Particle-approximation_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
376.16 kB
Formato
Adobe PDF
|
376.16 kB | Adobe PDF | Contatta l'autore |
Buttà_postprint_Particle-approximation_2021.pdf
Open Access dal 22/04/2022
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
277.75 kB
Formato
Adobe PDF
|
277.75 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.