In this paper we prove the convergence of a suitable particle system towards the BGK model. More precisely, we consider an interacting stochastic particle system in which each particle can instantaneously thermalize locally. We show that, under a suitable scaling limit, propagation of chaos does hold and the one-particle distribution function converges to the solution of the BGK equation.

Particle Approximation of the BGK Equation / Butta', P.; Hauray, M.; Pulvirenti, M.. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 240:2(2021), pp. 785-808. [10.1007/s00205-021-01621-y]

Particle Approximation of the BGK Equation

Butta' P.
;
Pulvirenti M.
2021

Abstract

In this paper we prove the convergence of a suitable particle system towards the BGK model. More precisely, we consider an interacting stochastic particle system in which each particle can instantaneously thermalize locally. We show that, under a suitable scaling limit, propagation of chaos does hold and the one-particle distribution function converges to the solution of the BGK equation.
2021
BGK equation; kinetic limits; stochastic particle dynamics
01 Pubblicazione su rivista::01a Articolo in rivista
Particle Approximation of the BGK Equation / Butta', P.; Hauray, M.; Pulvirenti, M.. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 240:2(2021), pp. 785-808. [10.1007/s00205-021-01621-y]
File allegati a questo prodotto
File Dimensione Formato  
Buttà_Particle-approximation_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 376.16 kB
Formato Adobe PDF
376.16 kB Adobe PDF   Contatta l'autore
Buttà_postprint_Particle-approximation_2021.pdf

Open Access dal 22/04/2022

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 277.75 kB
Formato Adobe PDF
277.75 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1540151
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact