GABAA receptors-(Rs) are fundamental for the maintenance of an efficient inhibitory function in the central nervous system (CNS). Their dysfunction is associated with a wide range of CNS disorders, many of which characterized by seizures and epilepsy. Recently, an increased use-dependent desensitization due to a repetitive GABA stimulation (GABAA current rundown) of GABAARs has been associated with drug-resistant temporal lobe epilepsy (TLE). Here, we aimed to investigate the molecular determinants of GABAA current rundown with two different heterologous expression systems (Xenopus oocytes and human embryonic kidney cells; HEK) which allowed us to manipulate receptor stoichiometry and to study the GABAA current rundown on different GABAAR configurations. To this purpose, we performed electrophysiology experiments using two-electrode voltage clamp in oocytes and confirming part of our results in HEK. We found that different degrees of GABAA current rundown can be associated with the expression of different GABAAR beta-subunits reaching the maximum current decrease when functional alpha1beta2 receptors are expressed. Furthermore, the blockade of phosphatases can prevent the current rundown observed in alpha1beta2 GABAARs. Since GABAAR represents one important therapeutic target in the treatment of human epilepsy, our results could open new perspectives on the therapeutic management of drug-resistant patients showing a GABAergic impairment.
Dissecting the molecular determinants of GABAA receptors current rundown, a hallmark of refractory human epilepsy / Cifelli, Pierangelo; Di Angelantonio, Silvia; Alfano, Veronica; Morano, Alessandra; De Felice, Eleonora; Aronica, Eleonora; Ruffolo, Gabriele; Palma, Eleonora. - In: BRAIN SCIENCES. - ISSN 2076-3425. - 11:4(2021). [10.3390/brainsci11040441]
Dissecting the molecular determinants of GABAA receptors current rundown, a hallmark of refractory human epilepsy
Cifelli, PierangeloPrimo
;Di Angelantonio, SilviaSecondo
;Alfano, Veronica;Morano, Alessandra;De Felice, Eleonora;Aronica, Eleonora;Ruffolo, Gabriele
Penultimo
;Palma, EleonoraUltimo
2021
Abstract
GABAA receptors-(Rs) are fundamental for the maintenance of an efficient inhibitory function in the central nervous system (CNS). Their dysfunction is associated with a wide range of CNS disorders, many of which characterized by seizures and epilepsy. Recently, an increased use-dependent desensitization due to a repetitive GABA stimulation (GABAA current rundown) of GABAARs has been associated with drug-resistant temporal lobe epilepsy (TLE). Here, we aimed to investigate the molecular determinants of GABAA current rundown with two different heterologous expression systems (Xenopus oocytes and human embryonic kidney cells; HEK) which allowed us to manipulate receptor stoichiometry and to study the GABAA current rundown on different GABAAR configurations. To this purpose, we performed electrophysiology experiments using two-electrode voltage clamp in oocytes and confirming part of our results in HEK. We found that different degrees of GABAA current rundown can be associated with the expression of different GABAAR beta-subunits reaching the maximum current decrease when functional alpha1beta2 receptors are expressed. Furthermore, the blockade of phosphatases can prevent the current rundown observed in alpha1beta2 GABAARs. Since GABAAR represents one important therapeutic target in the treatment of human epilepsy, our results could open new perspectives on the therapeutic management of drug-resistant patients showing a GABAergic impairment.File | Dimensione | Formato | |
---|---|---|---|
Cifelli_Dissecting the molecular_2021.pdf
accesso aperto
Note: https://www.mdpi.com/2076-3425/11/4/441
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.