This paper presents a computational model for managing an Embodied Conversational Agent's first impressions of warmth and competence towards the user. These impressions are important to manage because they can impact users' perception of the agent and their willingness to continue the interaction with the agent. The model aims at detecting user's impression of the agent and producing appropriate agent's verbal and nonverbal behaviours in order to maintain a positive impression of warmth and competence. User's impressions are recognized using a machine learning approach with facial expressions (action units) which are important indicators of users' affective states and intentions. The agent adapts in real-time its verbal and nonverbal behaviour, with a reinforcement learning algorithm that takes user's impressions as reward to select the most appropriate combination of verbal and non-verbal behaviour to perform. A user study to test the model in a contextualized interaction with users is also presented. Our hypotheses are that users' ratings differs when the agents adapts its behaviour according to our reinforcement learning algorithm, compared to when the agent does not adapt its behaviour to user's reactions (i.e., when it randomly selects its behaviours). The study shows a general tendency for the agent to perform better when using our model than in the random condition. Significant results shows that user's ratings about agent's warmth are influenced by their a-priori about virtual characters, as well as that users' judged the agent as more competent when it adapted its behaviour compared to random condition.

A Computational Model for Managing Impressions of an Embodied Conversational Agent in Real-Time / Biancardi, B.; Wang, C.; Mancini, M.; Cafaro, A.; Chanel, G.; Pelachaud, C.. - (2019), pp. 234-240. (Intervento presentato al convegno 8th International Conference on Affective Computing and Intelligent Interaction, ACII 2019 tenutosi a UK) [10.1109/ACII.2019.8925495].

A Computational Model for Managing Impressions of an Embodied Conversational Agent in Real-Time

Mancini M.;
2019

Abstract

This paper presents a computational model for managing an Embodied Conversational Agent's first impressions of warmth and competence towards the user. These impressions are important to manage because they can impact users' perception of the agent and their willingness to continue the interaction with the agent. The model aims at detecting user's impression of the agent and producing appropriate agent's verbal and nonverbal behaviours in order to maintain a positive impression of warmth and competence. User's impressions are recognized using a machine learning approach with facial expressions (action units) which are important indicators of users' affective states and intentions. The agent adapts in real-time its verbal and nonverbal behaviour, with a reinforcement learning algorithm that takes user's impressions as reward to select the most appropriate combination of verbal and non-verbal behaviour to perform. A user study to test the model in a contextualized interaction with users is also presented. Our hypotheses are that users' ratings differs when the agents adapts its behaviour according to our reinforcement learning algorithm, compared to when the agent does not adapt its behaviour to user's reactions (i.e., when it randomly selects its behaviours). The study shows a general tendency for the agent to perform better when using our model than in the random condition. Significant results shows that user's ratings about agent's warmth are influenced by their a-priori about virtual characters, as well as that users' judged the agent as more competent when it adapted its behaviour compared to random condition.
2019
8th International Conference on Affective Computing and Intelligent Interaction, ACII 2019
Competence; Embodied Conversational Agents; Facial Expressions Detection; First Impressions; Impression Management; Machine learning; Warmth
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A Computational Model for Managing Impressions of an Embodied Conversational Agent in Real-Time / Biancardi, B.; Wang, C.; Mancini, M.; Cafaro, A.; Chanel, G.; Pelachaud, C.. - (2019), pp. 234-240. (Intervento presentato al convegno 8th International Conference on Affective Computing and Intelligent Interaction, ACII 2019 tenutosi a UK) [10.1109/ACII.2019.8925495].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1531477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 5
social impact