Localization of eddy current probes in Nondestructive Testing allows merging the defect detection with the information about defect positions. Typically, this task requires the usage of additional and costly position measurement systems or software assisted handlers in controlled laboratory conditions. However, many of these tests require free hand movements of the eddy current probes. In addition, in many industrial applications low cost is a stringent requirement. This paper proposes a novel solution to address the considered issues. In particular, the paper describes the usage of a magnetic 2D wireless localization method, able to track the probe position during the execution of Nondestructive Tests. To the best of our knowledge, such approach is novel and promises to provide localization information in Nondestructive Testing by means of low-cost hardware. Moreover, it is characterized by a light computational burden, since it reuses most of the equipment already needed for the test itself. Preliminary results, proving the suitability of a real time simultaneous testing and localization system, are reported in this paper.

An accurate localization system for Nondestructive testing based on magnetic measurements in quasi-planar domain / Cerro, G.; Ferrigno, L.; Laracca, M.; Milano, F.; Carbone, P.; Comuniello, A.; De Angelis, A.; Moschitta, A.. - In: MEASUREMENT. - ISSN 0263-2241. - 139:(2019), pp. 467-474. [10.1016/j.measurement.2019.03.022]

An accurate localization system for Nondestructive testing based on magnetic measurements in quasi-planar domain

Laracca M.;
2019

Abstract

Localization of eddy current probes in Nondestructive Testing allows merging the defect detection with the information about defect positions. Typically, this task requires the usage of additional and costly position measurement systems or software assisted handlers in controlled laboratory conditions. However, many of these tests require free hand movements of the eddy current probes. In addition, in many industrial applications low cost is a stringent requirement. This paper proposes a novel solution to address the considered issues. In particular, the paper describes the usage of a magnetic 2D wireless localization method, able to track the probe position during the execution of Nondestructive Tests. To the best of our knowledge, such approach is novel and promises to provide localization information in Nondestructive Testing by means of low-cost hardware. Moreover, it is characterized by a light computational burden, since it reuses most of the equipment already needed for the test itself. Preliminary results, proving the suitability of a real time simultaneous testing and localization system, are reported in this paper.
2019
eddy current testing; localization system; magnetic measurement
01 Pubblicazione su rivista::01a Articolo in rivista
An accurate localization system for Nondestructive testing based on magnetic measurements in quasi-planar domain / Cerro, G.; Ferrigno, L.; Laracca, M.; Milano, F.; Carbone, P.; Comuniello, A.; De Angelis, A.; Moschitta, A.. - In: MEASUREMENT. - ISSN 0263-2241. - 139:(2019), pp. 467-474. [10.1016/j.measurement.2019.03.022]
File allegati a questo prodotto
File Dimensione Formato  
Cerro_ An accurate localization_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1526383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 11
social impact