Clastic wedges deposited in deep-marine turbidite systemsalong the circum-Mediterranean region represent key tectonic elements that record the structural growing of the Apennine orogenic belt over the Adria margin. One of these clastic wedges is represented by the Agnone Flysch turbidite succession deposited in the Lagonegro-Molise foredeep basin in the early Messinian, for which the depositional facies and the related processes, as well as the sandstone and mudstone composition are poorly known. A combined sedimentology and sedimentary petrology study has been conducted on this turbidite succession that provides new insight to define the basin architecture and the provenance of the Agnone Flysch during late Miocene. Facies analysis suggests that this turbidite succession is constituted by depositional lobes that were emplaced in a sector of the basin showing a variable morphological confinement with frontal and lateral slope on which turbidite deposits onlapped. Consequently, this topographic context controlled the lateral and vertical distribution of turbidite facies, which record the effects of erosive processes, as well as impact, rebound and reflection processes, in turn related to the flow deceleration induced by structurally-controlled basin confinement. Detailed sandstones compositional analysis indicates a complex unroofing history that reflects structural changes in the source rock units and depositional basin physiography. By combining the sandstone composition with information deduced from the X-ray diffraction (XRD) patterns after thermo-chemical treatments (heating and ethylene glycol treatments), it was possible to explain and predict the sedimentary evolution and geological processes affecting fine grained sediments and, thus, the relationship developed between source area and sedimentary basin. In particular, clay minerals data show that Agnone Flysch experienced an early diagenetic condition as showed by the occurrence of the I/S R0 and I/S R1 on the XRD pattern of the glycolated specimens. The sandstone composition (mainly quartzofeldspathic) shows an increase in the metamorphic rock fragments and a decrease of sedimentary lithics up-section. This compositional trend records, together with the paleocurrents data, a derivation of this material from a mountain range located in the Tyrrhenian sector and from the Calabrian arc terranes.

Facies, composition and provenance of the Agnone Flysch in the context of the early Messinian evolution of the southern Apennine foredeep (Molise, Italy) / Milli, Salvatore; Critelli, Salvatore; Amicone, Emanuele; Campilongo, Gloria; Muto, Francesco; Tripodi, Vincenzo; Tentori &, Daniel; Perri, Francesco. - In: ITALIAN JOURNAL OF GEOSCIENCES. - ISSN 2038-1719. - 140:2(2021), pp. 275-312. [10.3301/IJG.2021.01]

Facies, composition and provenance of the Agnone Flysch in the context of the early Messinian evolution of the southern Apennine foredeep (Molise, Italy)

Salvatore Milli
Primo
;
2021

Abstract

Clastic wedges deposited in deep-marine turbidite systemsalong the circum-Mediterranean region represent key tectonic elements that record the structural growing of the Apennine orogenic belt over the Adria margin. One of these clastic wedges is represented by the Agnone Flysch turbidite succession deposited in the Lagonegro-Molise foredeep basin in the early Messinian, for which the depositional facies and the related processes, as well as the sandstone and mudstone composition are poorly known. A combined sedimentology and sedimentary petrology study has been conducted on this turbidite succession that provides new insight to define the basin architecture and the provenance of the Agnone Flysch during late Miocene. Facies analysis suggests that this turbidite succession is constituted by depositional lobes that were emplaced in a sector of the basin showing a variable morphological confinement with frontal and lateral slope on which turbidite deposits onlapped. Consequently, this topographic context controlled the lateral and vertical distribution of turbidite facies, which record the effects of erosive processes, as well as impact, rebound and reflection processes, in turn related to the flow deceleration induced by structurally-controlled basin confinement. Detailed sandstones compositional analysis indicates a complex unroofing history that reflects structural changes in the source rock units and depositional basin physiography. By combining the sandstone composition with information deduced from the X-ray diffraction (XRD) patterns after thermo-chemical treatments (heating and ethylene glycol treatments), it was possible to explain and predict the sedimentary evolution and geological processes affecting fine grained sediments and, thus, the relationship developed between source area and sedimentary basin. In particular, clay minerals data show that Agnone Flysch experienced an early diagenetic condition as showed by the occurrence of the I/S R0 and I/S R1 on the XRD pattern of the glycolated specimens. The sandstone composition (mainly quartzofeldspathic) shows an increase in the metamorphic rock fragments and a decrease of sedimentary lithics up-section. This compositional trend records, together with the paleocurrents data, a derivation of this material from a mountain range located in the Tyrrhenian sector and from the Calabrian arc terranes.
2021
Agnone Flysch; turbidite facies; composition; provenance; sandstone; late Miocene; southern Apennines.
01 Pubblicazione su rivista::01a Articolo in rivista
Facies, composition and provenance of the Agnone Flysch in the context of the early Messinian evolution of the southern Apennine foredeep (Molise, Italy) / Milli, Salvatore; Critelli, Salvatore; Amicone, Emanuele; Campilongo, Gloria; Muto, Francesco; Tripodi, Vincenzo; Tentori &, Daniel; Perri, Francesco. - In: ITALIAN JOURNAL OF GEOSCIENCES. - ISSN 2038-1719. - 140:2(2021), pp. 275-312. [10.3301/IJG.2021.01]
File allegati a questo prodotto
File Dimensione Formato  
Milli_Facies_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 15.82 MB
Formato Adobe PDF
15.82 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1525669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact