Neuroimaging studies have revealed two separate classes of category-selective regions specialized in optic flow (egomotion-compatible) processing and in scene/place perception. Despite the importance of both optic flow and scene/place recognition to estimate changes in position and orientation within the environment during self-motion, the possible functional link between egomotion- and scene-selective regions has not yet been established. Here we reanalyzed functional magnetic resonance images from a large sample of participants performing two well-known “localizer” fMRI experiments, consisting in passive viewing of navigationally relevant stimuli such as buildings and places (scene/place stimulus) and coherently moving fields of dots simulating the visual stimulation during self-motion (flow fields). After interrogating the egomotion-selective areas with respect to the scene/place stimulus and the scene-selective areas with respect to flow fields, we found that the egomotion-selective areas V6+ and pIPS/V3A responded bilaterally more to scenes/places compared to faces, and all the scene-selective areas (parahippocampal place area or PPA, retrosplenial complex or RSC, and occipital place area or OPA) responded more to egomotion-compatible optic flow compared to random motion. The conjunction analysis between scene/place and flow field stimuli revealed that the most important focus of common activation was found in the dorsolateral parieto-occipital cortex, spanning the scene-selective OPA and the egomotion-selective pIPS/V3A. Individual inspection of the relative locations of these two regions revealed a partial overlap and a similar response profile to an independent low-level visual motion stimulus, suggesting that OPA and pIPS/V3A may be part of a unique motion-selective complex specialized in encoding both egomotion- and scene-relevant information, likely for the control of navigation in a structured environment.

A common neural substrate for processing scenes and egomotion-compatible visual motion / Sulpizio, V.; Galati, G.; Fattori, P.; Galletti, C.; Pitzalis, S.. - In: BRAIN STRUCTURE AND FUNCTION. - ISSN 1863-2653. - 225:7(2020), pp. 2091-2110. [10.1007/s00429-020-02112-8]

A common neural substrate for processing scenes and egomotion-compatible visual motion

Sulpizio V.
;
Galati G.;
2020

Abstract

Neuroimaging studies have revealed two separate classes of category-selective regions specialized in optic flow (egomotion-compatible) processing and in scene/place perception. Despite the importance of both optic flow and scene/place recognition to estimate changes in position and orientation within the environment during self-motion, the possible functional link between egomotion- and scene-selective regions has not yet been established. Here we reanalyzed functional magnetic resonance images from a large sample of participants performing two well-known “localizer” fMRI experiments, consisting in passive viewing of navigationally relevant stimuli such as buildings and places (scene/place stimulus) and coherently moving fields of dots simulating the visual stimulation during self-motion (flow fields). After interrogating the egomotion-selective areas with respect to the scene/place stimulus and the scene-selective areas with respect to flow fields, we found that the egomotion-selective areas V6+ and pIPS/V3A responded bilaterally more to scenes/places compared to faces, and all the scene-selective areas (parahippocampal place area or PPA, retrosplenial complex or RSC, and occipital place area or OPA) responded more to egomotion-compatible optic flow compared to random motion. The conjunction analysis between scene/place and flow field stimuli revealed that the most important focus of common activation was found in the dorsolateral parieto-occipital cortex, spanning the scene-selective OPA and the egomotion-selective pIPS/V3A. Individual inspection of the relative locations of these two regions revealed a partial overlap and a similar response profile to an independent low-level visual motion stimulus, suggesting that OPA and pIPS/V3A may be part of a unique motion-selective complex specialized in encoding both egomotion- and scene-relevant information, likely for the control of navigation in a structured environment.
2020
brain mapping; functional magnetic resonance; OPA; optic flow; scene perception; V3A
01 Pubblicazione su rivista::01a Articolo in rivista
A common neural substrate for processing scenes and egomotion-compatible visual motion / Sulpizio, V.; Galati, G.; Fattori, P.; Galletti, C.; Pitzalis, S.. - In: BRAIN STRUCTURE AND FUNCTION. - ISSN 1863-2653. - 225:7(2020), pp. 2091-2110. [10.1007/s00429-020-02112-8]
File allegati a questo prodotto
File Dimensione Formato  
Sulpizio_Common-neural-substrate_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1524806
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
social impact