The last few years have seen the development and fabrication of nanoscale circuits at high density and low power. Following a single-event upset (SEU), so-called soft errors due to internal and externally induced phenomena (such as α-particles and cosmic rays in adverse environments) have been reported during system operation; this is especially deleterious for storage elements such as flip-flops. To reduce the impact of a soft error on flip-flops, hardening techniques have been utilized. This paper proposes two new slave latches for improving the SEU tolerance of a flip-flop in scan delay testing. The two proposed slave latches utilize additional circuitry to increase the critical charge of the flip-flop compared to designs found in the technical literature. When used in a flip-flop, the first (second) latch design achieves a 5.6 (2.4) times larger critical charge with 11% (4%) delay and 16% (9%) power consumption overhead at 32-nm feature size, as compared with the best design found in the technical literature. Moreover, it is shown that the proposed slave latches have also superior performance in the presence of a single event with a multiple-node upset.
Design and analysis of single event tolerant slave latches for enhanced scan delay testing / Lu, Y; Lombardi, F; Pontarelli, Salvatore; Ottavi, Marco. - In: IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY. - ISSN 1530-4388. - 14:1(2014), pp. 333-343. [10.1109/TDMR.2013.2266543]
Design and analysis of single event tolerant slave latches for enhanced scan delay testing
PONTARELLI, SALVATORE;
2014
Abstract
The last few years have seen the development and fabrication of nanoscale circuits at high density and low power. Following a single-event upset (SEU), so-called soft errors due to internal and externally induced phenomena (such as α-particles and cosmic rays in adverse environments) have been reported during system operation; this is especially deleterious for storage elements such as flip-flops. To reduce the impact of a soft error on flip-flops, hardening techniques have been utilized. This paper proposes two new slave latches for improving the SEU tolerance of a flip-flop in scan delay testing. The two proposed slave latches utilize additional circuitry to increase the critical charge of the flip-flop compared to designs found in the technical literature. When used in a flip-flop, the first (second) latch design achieves a 5.6 (2.4) times larger critical charge with 11% (4%) delay and 16% (9%) power consumption overhead at 32-nm feature size, as compared with the best design found in the technical literature. Moreover, it is shown that the proposed slave latches have also superior performance in the presence of a single event with a multiple-node upset.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.