Polycrystalline materials with inter-granular phases are modern composite materials extremely relevant for a wide range of applications, including aerospace, defence and automotive engineering. Their complex microstructure is often characterized by stochastically disordered distributions, having a direct impact on the overall mechanical behaviour. In this context, within the framework of homogenization theories, we adopt a Fast Statistical Homogenization Procedure (FSHP), already developed in Pingaro et al. (2019), to reliably grasp the constitutive relations of equivalent homogeneous continua accounting for the presence of random internal structures. The approach, combined with the Virtual Element Method (VEM) used as a valuable tool to keep computational costs down, is here successfully extended to account for the peculiar microstructure of composites with polycrystals interconnected by thin interfaces. Numerical examples of cermet-like linear elastic composites complement the paper.
Statistical homogenization of polycrystal composite materials with thin interfaces using virtual element method / Pingaro, M.; De Bellis, M. L.; Trovalusci, P.; Masiani, R.. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - 264:(2021), p. 113741. [10.1016/j.compstruct.2021.113741]
Statistical homogenization of polycrystal composite materials with thin interfaces using virtual element method
Pingaro M.
Primo
;Trovalusci P.Penultimo
;Masiani R.Ultimo
2021
Abstract
Polycrystalline materials with inter-granular phases are modern composite materials extremely relevant for a wide range of applications, including aerospace, defence and automotive engineering. Their complex microstructure is often characterized by stochastically disordered distributions, having a direct impact on the overall mechanical behaviour. In this context, within the framework of homogenization theories, we adopt a Fast Statistical Homogenization Procedure (FSHP), already developed in Pingaro et al. (2019), to reliably grasp the constitutive relations of equivalent homogeneous continua accounting for the presence of random internal structures. The approach, combined with the Virtual Element Method (VEM) used as a valuable tool to keep computational costs down, is here successfully extended to account for the peculiar microstructure of composites with polycrystals interconnected by thin interfaces. Numerical examples of cermet-like linear elastic composites complement the paper.File | Dimensione | Formato | |
---|---|---|---|
Pingaro_Statistical_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.