We prove the absence of eigenvalues of the three-dimensional Dirac operator with non-Hermitian potentials in unbounded regions of the complex plane under smallness conditions on the potentials in Lebesgue spaces. Our sufficient conditions are quantitative and easily checkable.

Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators / Fanelli, L.; Krejcirik, D.. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 109:7(2019), pp. 1473-1485. [10.1007/s11005-018-01155-7]

Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators

Fanelli L.;
2019

Abstract

We prove the absence of eigenvalues of the three-dimensional Dirac operator with non-Hermitian potentials in unbounded regions of the complex plane under smallness conditions on the potentials in Lebesgue spaces. Our sufficient conditions are quantitative and easily checkable.
2019
Absence of eigenvalues; Birman–Schwinger principle; complex potential; Dirac operator; non-self-adjoint perturbation; pseudo-Friedrichs extension
01 Pubblicazione su rivista::01a Articolo in rivista
Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators / Fanelli, L.; Krejcirik, D.. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 109:7(2019), pp. 1473-1485. [10.1007/s11005-018-01155-7]
File allegati a questo prodotto
File Dimensione Formato  
Fanelli_Location-of-eigenvalues_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 943.03 kB
Formato Adobe PDF
943.03 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1509626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact