In 1999, the International Federation of Clinical Neurophysiology (IFCN) published “IFCN Guidelines for topographic and frequency analysis of EEGs and EPs” (Nuwer et al., 1999). Here a Workgroup of IFCN experts presents unanimous recommendations on the following procedures relevant for the topographic and frequency analysis of resting state EEGs (rsEEGs) in clinical research defined as neurophysiological experimental studies carried out in neurological and psychiatric patients: (1) recording of rsEEGs (environmental conditions and instructions to participants; montage of the EEG electrodes; recording settings); (2) digital storage of rsEEG and control data; (3) computerized visualization of rsEEGs and control data (identification of artifacts and neuropathological rsEEG waveforms); (4) extraction of “synchronization” features based on frequency analysis (band-pass filtering and computation of rsEEG amplitude/power density spectrum); (5) extraction of “connectivity” features based on frequency analysis (linear and nonlinear measures); (6) extraction of “topographic” features (topographic mapping; cortical source mapping; estimation of scalp current density and dura surface potential; cortical connectivity mapping), and (7) statistical analysis and neurophysiological interpretation of those rsEEG features. As core outcomes, the IFCN Workgroup endorsed the use of the most promising “synchronization” and “connectivity” features for clinical research, carefully considering the limitations discussed in this paper. The Workgroup also encourages more experimental (i.e. simulation studies) and clinical research within international initiatives (i.e., shared software platforms and databases) facing the open controversies about electrode montages and linear vs. nonlinear and electrode vs. source levels of those analyses.

International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies / Babiloni, C.; Barry, R. J.; Basar, E.; Blinowska, K. J.; Cichocki, A.; Drinkenburg, W. H. I. M.; Klimesch, W.; Knight, R. T.; Lopes da Silva, F.; Nunez, P.; Oostenveld, R.; Jeong, J.; Pascual-Marqui, R.; Valdes-Sosa, P.; Hallett, M.. - In: CLINICAL NEUROPHYSIOLOGY. - ISSN 1388-2457. - 131:1(2020), pp. 285-307. [10.1016/j.clinph.2019.06.234]

International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies

Babiloni C.
;
2020

Abstract

In 1999, the International Federation of Clinical Neurophysiology (IFCN) published “IFCN Guidelines for topographic and frequency analysis of EEGs and EPs” (Nuwer et al., 1999). Here a Workgroup of IFCN experts presents unanimous recommendations on the following procedures relevant for the topographic and frequency analysis of resting state EEGs (rsEEGs) in clinical research defined as neurophysiological experimental studies carried out in neurological and psychiatric patients: (1) recording of rsEEGs (environmental conditions and instructions to participants; montage of the EEG electrodes; recording settings); (2) digital storage of rsEEG and control data; (3) computerized visualization of rsEEGs and control data (identification of artifacts and neuropathological rsEEG waveforms); (4) extraction of “synchronization” features based on frequency analysis (band-pass filtering and computation of rsEEG amplitude/power density spectrum); (5) extraction of “connectivity” features based on frequency analysis (linear and nonlinear measures); (6) extraction of “topographic” features (topographic mapping; cortical source mapping; estimation of scalp current density and dura surface potential; cortical connectivity mapping), and (7) statistical analysis and neurophysiological interpretation of those rsEEG features. As core outcomes, the IFCN Workgroup endorsed the use of the most promising “synchronization” and “connectivity” features for clinical research, carefully considering the limitations discussed in this paper. The Workgroup also encourages more experimental (i.e. simulation studies) and clinical research within international initiatives (i.e., shared software platforms and databases) facing the open controversies about electrode montages and linear vs. nonlinear and electrode vs. source levels of those analyses.
2020
clinical neurophysiology; EEG biomarkers; frequency and topographical analysis; functional connectivity; linear and nonlinear analysis; quantitative Electroencephalography (qEEG); resting state condition; source localization and estimation; artifacts; biomedical research; brain mapping; brain waves; databases as topic; electrodes; Electroencephalography; Electroencephalography phase synchronization; environment; humans; information storage and retrieval; mental disorders; nervous system diseases; neurophysiology; rest; scalp; simulation training; software; wakefulness
01 Pubblicazione su rivista::01a Articolo in rivista
International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies / Babiloni, C.; Barry, R. J.; Basar, E.; Blinowska, K. J.; Cichocki, A.; Drinkenburg, W. H. I. M.; Klimesch, W.; Knight, R. T.; Lopes da Silva, F.; Nunez, P.; Oostenveld, R.; Jeong, J.; Pascual-Marqui, R.; Valdes-Sosa, P.; Hallett, M.. - In: CLINICAL NEUROPHYSIOLOGY. - ISSN 1388-2457. - 131:1(2020), pp. 285-307. [10.1016/j.clinph.2019.06.234]
File allegati a questo prodotto
File Dimensione Formato  
Babiloni_International-federation_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 950.45 kB
Formato Adobe PDF
950.45 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1508293
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 156
  • ???jsp.display-item.citation.isi??? 122
social impact