We report on known results on the geometry of the limiting solutions of a reaction-diffusion system in any number of competing species k as the competition rate m tends to infinity. The case k=8 is studied in detail. We provide numerical simulations of solutions of the system for k=4,6,8 and large competition rate. Thanks to FreeFEM++ software, we obtain nodal partitions showing the predicted limiting configurations.
Geometry of the limiting solution of a strongly competing system / Lanzara, Flavia; Montefusco, Eugenio. - In: LECTURE NOTES OF TICMI. - ISSN 1512-0511. - 21:(2020), pp. 53-65.
Geometry of the limiting solution of a strongly competing system
Flavia Lanzara;Eugenio Montefusco
2020
Abstract
We report on known results on the geometry of the limiting solutions of a reaction-diffusion system in any number of competing species k as the competition rate m tends to infinity. The case k=8 is studied in detail. We provide numerical simulations of solutions of the system for k=4,6,8 and large competition rate. Thanks to FreeFEM++ software, we obtain nodal partitions showing the predicted limiting configurations.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Lanzara_Geometry_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Contatta l'autore |
Lanzara_postprint_Geometry_2020.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.