White-light continuum (WLC) generation in bulk media finds numerous applications in ultrafast optics and spectroscopy. Due to the complexity of the underlying spatiotemporal dynamics, WLC optimization typically follows empirical procedures. Deep reinforcement learning (RL) is a branch of machine learning dealing with the control of automated systems using deep neural networks. In this Letter, we demonstrate the capability of a deep RL agent to generate a long-term-stable WLC from a bulk medium without any previous knowledge of the system dynamics or functioning. This work demonstrates that RL can be exploited effectively to control complex nonlinear optical experiments.

Deep reinforcement learning control of white-light continuum generation / Valensise, Carlo M.; Giuseppi, Alessandro; Cerullo, Giulio; Polli, Dario. - In: OPTICA. - ISSN 2334-2536. - 8:2(2021), pp. 239-242. [10.1364/OPTICA.414634]

Deep reinforcement learning control of white-light continuum generation

Valensise, Carlo M.
;
Giuseppi, Alessandro;
2021

Abstract

White-light continuum (WLC) generation in bulk media finds numerous applications in ultrafast optics and spectroscopy. Due to the complexity of the underlying spatiotemporal dynamics, WLC optimization typically follows empirical procedures. Deep reinforcement learning (RL) is a branch of machine learning dealing with the control of automated systems using deep neural networks. In this Letter, we demonstrate the capability of a deep RL agent to generate a long-term-stable WLC from a bulk medium without any previous knowledge of the system dynamics or functioning. This work demonstrates that RL can be exploited effectively to control complex nonlinear optical experiments.
2021
deep reinforcement learning; automation; spectroscopy;
01 Pubblicazione su rivista::01a Articolo in rivista
Deep reinforcement learning control of white-light continuum generation / Valensise, Carlo M.; Giuseppi, Alessandro; Cerullo, Giulio; Polli, Dario. - In: OPTICA. - ISSN 2334-2536. - 8:2(2021), pp. 239-242. [10.1364/OPTICA.414634]
File allegati a questo prodotto
File Dimensione Formato  
Valensise_Deep-reinforcement_2021.pdf

accesso aperto

Note: https://doi.org/10.1364/OPTICA.414634
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.8 MB
Formato Adobe PDF
3.8 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1503121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact