The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 main-shock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering the Mw 7.1 mainshock that happened ∼ 34 hr later. Rupture of the Mw 7.1 main-shock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼ 5m, located at a depth range of 3–8kmneartheMw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼ 2km/ s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼ 0:5 MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large var-iations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes.

Rupture process of the 2019 ridgecrest, California mw 6.4 foreshock and mw 7.1 earthquake constrained by seismic and geodetic data / Wang, K.; Dreger, D. S.; Tinti, E.; Burgmann, R.; Taira, T.. - In: BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA. - ISSN 0037-1106. - 110:4(2020), pp. 1603-1626. [10.1785/0120200108]

Rupture process of the 2019 ridgecrest, California mw 6.4 foreshock and mw 7.1 earthquake constrained by seismic and geodetic data

Tinti E.;
2020

Abstract

The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 main-shock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering the Mw 7.1 mainshock that happened ∼ 34 hr later. Rupture of the Mw 7.1 main-shock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼ 5m, located at a depth range of 3–8kmneartheMw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼ 2km/ s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼ 0:5 MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large var-iations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes.
2020
kinematic model; ridgecrest sequence; seismic source; earthquake
01 Pubblicazione su rivista::01a Articolo in rivista
Rupture process of the 2019 ridgecrest, California mw 6.4 foreshock and mw 7.1 earthquake constrained by seismic and geodetic data / Wang, K.; Dreger, D. S.; Tinti, E.; Burgmann, R.; Taira, T.. - In: BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA. - ISSN 0037-1106. - 110:4(2020), pp. 1603-1626. [10.1785/0120200108]
File allegati a questo prodotto
File Dimensione Formato  
Wang_Rupture 2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Contatta l'autore
Wang_Erratum_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 481.16 kB
Formato Adobe PDF
481.16 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1501628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 58
social impact