The solar receiver is a critical component of concentrated solar power technology; it works as a heat exchanger, transforming the concentrated solar radiation into high-temperature heat. Volumetric receiver technologies, using air as a heat transfer fluid, are designed to reach higher temperatures than the current receiver technology, which is limited by material resistance and fluid instability. The higher temperature, up to 1200 K, could be used in high-temperature industrial processes or a high-temperature thermodynamic cycle. A correct radiation propagation is essential to develop their performances, reducing reflection and emission losses and promote the heat transfer to the fluid. In this study, the optical behaviour of a hierarchical volumetric receiver (HVR) developed in Bruno Kessler Foundation (FBK) has been studied using Monte Carlo ray tracing (MCRT) simulations. The simulations have been validated in an experimental setup that evaluates the light transmissivity of the HVR porous structure. Two different HVR structures are evaluated with MCRT simulations that use a real solar dish geometry to configure a complete concentrated solar power (CSP) plant. Results show that frontal and rear losses are, respectively, 12% and 3% of the incoming concentrated radiation. Inside the HVR, 15% of the incoming power is propagated trough the lateral void spaces. Therefore, the power spreading avoids the overconcentration of the centre of the focalized area. The HVR optical behaviour has been investigated, showing an optical efficiency of 85%.

Analysis of Radiation Propagation inside a Hierarchical Solar Volumetric Absorber / Pratticò, Luca; Bartali, Ruben; Crema, Luigi; Sciubba, Enrico. - 58:1(2020), pp. 1-12. (Intervento presentato al convegno The First World Energies Forum—Current and Future Energy Issues tenutosi a Roma) [10.3390/WEF-06932].

Analysis of Radiation Propagation inside a Hierarchical Solar Volumetric Absorber

Pratticò, Luca;Sciubba, Enrico
2020

Abstract

The solar receiver is a critical component of concentrated solar power technology; it works as a heat exchanger, transforming the concentrated solar radiation into high-temperature heat. Volumetric receiver technologies, using air as a heat transfer fluid, are designed to reach higher temperatures than the current receiver technology, which is limited by material resistance and fluid instability. The higher temperature, up to 1200 K, could be used in high-temperature industrial processes or a high-temperature thermodynamic cycle. A correct radiation propagation is essential to develop their performances, reducing reflection and emission losses and promote the heat transfer to the fluid. In this study, the optical behaviour of a hierarchical volumetric receiver (HVR) developed in Bruno Kessler Foundation (FBK) has been studied using Monte Carlo ray tracing (MCRT) simulations. The simulations have been validated in an experimental setup that evaluates the light transmissivity of the HVR porous structure. Two different HVR structures are evaluated with MCRT simulations that use a real solar dish geometry to configure a complete concentrated solar power (CSP) plant. Results show that frontal and rear losses are, respectively, 12% and 3% of the incoming concentrated radiation. Inside the HVR, 15% of the incoming power is propagated trough the lateral void spaces. Therefore, the power spreading avoids the overconcentration of the centre of the focalized area. The HVR optical behaviour has been investigated, showing an optical efficiency of 85%.
2020
The First World Energies Forum—Current and Future Energy Issues
concentrated solar power; radiation propagation; volumetric receivers; Monte Carlo ray tracing; high-temperature heat
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Analysis of Radiation Propagation inside a Hierarchical Solar Volumetric Absorber / Pratticò, Luca; Bartali, Ruben; Crema, Luigi; Sciubba, Enrico. - 58:1(2020), pp. 1-12. (Intervento presentato al convegno The First World Energies Forum—Current and Future Energy Issues tenutosi a Roma) [10.3390/WEF-06932].
File allegati a questo prodotto
File Dimensione Formato  
Pratticò_Analysis_2020.pdf

accesso aperto

Note: https://www.mdpi.com/2504-3900/58/1/27
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1500967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact