This work introduces the Generalized Dynamic Mixtures of Factor Analyzers (GDMFA) approach for clustering high-dimensional longitudinal data. The proposed model can be seen as an extension of the Gaussian mixture model where individuals are allowed to move between components over time and, within each component, local dimensional reduction is performed. Temporal dependence is modelled through a first-order finite-state Markov chain. The model parameters have been estimated through an Alternating Expected Conditional Maximization (AECM) algorithm and the performance of the GDMFA model is discussed on the equitable and sustainable well-being (BES) of Italian territories data set. The results are encouraging and would deserve further discussion.

The Generalized Dynamic Mixtures of Factor Analyzers for clustering multivariate longitudinal data / Martella, Francesca; Maruotti, Antonello; Tursini, Francesco. - (2020), pp. 1399-1404. (Intervento presentato al convegno 50th Scientific Meeting on the Italian Statistical Society tenutosi a Pisa).

The Generalized Dynamic Mixtures of Factor Analyzers for clustering multivariate longitudinal data

francesca martella
;
antonello maruotti;
2020

Abstract

This work introduces the Generalized Dynamic Mixtures of Factor Analyzers (GDMFA) approach for clustering high-dimensional longitudinal data. The proposed model can be seen as an extension of the Gaussian mixture model where individuals are allowed to move between components over time and, within each component, local dimensional reduction is performed. Temporal dependence is modelled through a first-order finite-state Markov chain. The model parameters have been estimated through an Alternating Expected Conditional Maximization (AECM) algorithm and the performance of the GDMFA model is discussed on the equitable and sustainable well-being (BES) of Italian territories data set. The results are encouraging and would deserve further discussion.
2020
50th Scientific Meeting on the Italian Statistical Society
factor analyzers; dimensionality reduction; Hidden Markov models
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
The Generalized Dynamic Mixtures of Factor Analyzers for clustering multivariate longitudinal data / Martella, Francesca; Maruotti, Antonello; Tursini, Francesco. - (2020), pp. 1399-1404. (Intervento presentato al convegno 50th Scientific Meeting on the Italian Statistical Society tenutosi a Pisa).
File allegati a questo prodotto
File Dimensione Formato  
Martella_Generalized-dynamic-mixtures_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 240.03 kB
Formato Unknown
240.03 kB Unknown   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1497484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact