A finite mixture model to simultaneously cluster the rows and columns of two-mode ordinal data matrix is proposed. Due to the numerical intractability of the likelihood function, estimation of model parameters is based on composite likelihood (CL) methods and essentially reduces to a computationally efficient Expectation-Maximization type algorithm. The performance of the proposed approach is discussed on both simulated and real datasets. The results are encouraging and would deserve further discussion.

Model-based approach to biclustering ordinal data / Ranalli, Monia; Martella, Francesca. - (2020), pp. 1177-1182. (Intervento presentato al convegno 50th Scientific Meeting on the Italian Statistical Society tenutosi a Pisa).

Model-based approach to biclustering ordinal data

Monia Ranalli
;
francesca Martella
2020

Abstract

A finite mixture model to simultaneously cluster the rows and columns of two-mode ordinal data matrix is proposed. Due to the numerical intractability of the likelihood function, estimation of model parameters is based on composite likelihood (CL) methods and essentially reduces to a computationally efficient Expectation-Maximization type algorithm. The performance of the proposed approach is discussed on both simulated and real datasets. The results are encouraging and would deserve further discussion.
2020
50th Scientific Meeting on the Italian Statistical Society
Mixture models, biclustering, ordinal data, latent variable models
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Model-based approach to biclustering ordinal data / Ranalli, Monia; Martella, Francesca. - (2020), pp. 1177-1182. (Intervento presentato al convegno 50th Scientific Meeting on the Italian Statistical Society tenutosi a Pisa).
File allegati a questo prodotto
File Dimensione Formato  
Ranalli_Model-based-approach_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 236.43 kB
Formato Adobe PDF
236.43 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1497415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact