We investigate how the kinetic energy acquired by a dense granular system driven by an external vibration depends on the input energy. Our focus is on the dependence of the granular behavior on two main parameters: frequency and vibration amplitude. We find that there exists an optimal forcing frequency at which the system reaches the maximal kinetic energy: if the input energy is increased beyond this threshold, the system dissipates more and more energy and recovers a colder and more viscous state. Quite surprisingly, the nonmonotonic behavior is found for vibration amplitudes which are sufficiently low to keep the system always in contact with the driving oscillating plate. Studying dissipative properties of the system, we unveil a striking difference between this nonmonotonic behavior and a standard resonance mechanism. This feature is also observed at the microscopic scale of the single-grain dynamics and can be interpreted as an instance of negative specific heat. An analytically solvable model based on a generalized forced-damped oscillator well reproduces the observed phenomenology, illustrating the role of the competing effects of forcing and dissipation.

Getting hotter by heating less: How driven granular materials dissipate energy in excess / Plati, A.; de Arcangelis, L.; Gnoli, A.; Lippiello, E.; Puglisi, A.; Sarracino, A.. - In: PHYSICAL REVIEW RESEARCH. - ISSN 2643-1564. - 3:1(2021), p. 013011. [10.1103/PhysRevResearch.3.013011]

Getting hotter by heating less: How driven granular materials dissipate energy in excess

Plati, A.
Primo
;
Puglisi, A.;
2021

Abstract

We investigate how the kinetic energy acquired by a dense granular system driven by an external vibration depends on the input energy. Our focus is on the dependence of the granular behavior on two main parameters: frequency and vibration amplitude. We find that there exists an optimal forcing frequency at which the system reaches the maximal kinetic energy: if the input energy is increased beyond this threshold, the system dissipates more and more energy and recovers a colder and more viscous state. Quite surprisingly, the nonmonotonic behavior is found for vibration amplitudes which are sufficiently low to keep the system always in contact with the driving oscillating plate. Studying dissipative properties of the system, we unveil a striking difference between this nonmonotonic behavior and a standard resonance mechanism. This feature is also observed at the microscopic scale of the single-grain dynamics and can be interpreted as an instance of negative specific heat. An analytically solvable model based on a generalized forced-damped oscillator well reproduces the observed phenomenology, illustrating the role of the competing effects of forcing and dissipation.
2021
Granular materials, Non equilibrium physics, negative specific heat
01 Pubblicazione su rivista::01a Articolo in rivista
Getting hotter by heating less: How driven granular materials dissipate energy in excess / Plati, A.; de Arcangelis, L.; Gnoli, A.; Lippiello, E.; Puglisi, A.; Sarracino, A.. - In: PHYSICAL REVIEW RESEARCH. - ISSN 2643-1564. - 3:1(2021), p. 013011. [10.1103/PhysRevResearch.3.013011]
File allegati a questo prodotto
File Dimensione Formato  
Plati_Getting hotter by heating less_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1495574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact