In this paper, we investigate algorithms for finding centers of a given collection N of sets. In particular, we focus on metric rational set similarities, a broad class of similarity measures including Jaccard and Hamming. A rational set similarity S is called metric if D= 1 - S is a distance function. We study the 1-center problem on these metric spaces. The problem consists of finding a set C that minimizes the maximum distance of C to any set of N. We present a general framework that computes a (1 + ε) approximation for any metric rational set similarity.

Polynomial Time Approximation Schemes for All 1-Center Problems on Metric Rational Set Similarities / Bury, M.; Gentili, M.; Schwiegelshohn, C.; Sorella, M.. - In: ALGORITHMICA. - ISSN 0178-4617. - 83:5(2021), pp. 1371-1392. [10.1007/s00453-020-00787-3]

Polynomial Time Approximation Schemes for All 1-Center Problems on Metric Rational Set Similarities

Gentili M.
;
Schwiegelshohn C.
;
Sorella M.
2021

Abstract

In this paper, we investigate algorithms for finding centers of a given collection N of sets. In particular, we focus on metric rational set similarities, a broad class of similarity measures including Jaccard and Hamming. A rational set similarity S is called metric if D= 1 - S is a distance function. We study the 1-center problem on these metric spaces. The problem consists of finding a set C that minimizes the maximum distance of C to any set of N. We present a general framework that computes a (1 + ε) approximation for any metric rational set similarity.
2021
1-Center; Clustering; Polynomial time approximation schemes; Rational set similarity
01 Pubblicazione su rivista::01a Articolo in rivista
Polynomial Time Approximation Schemes for All 1-Center Problems on Metric Rational Set Similarities / Bury, M.; Gentili, M.; Schwiegelshohn, C.; Sorella, M.. - In: ALGORITHMICA. - ISSN 0178-4617. - 83:5(2021), pp. 1371-1392. [10.1007/s00453-020-00787-3]
File allegati a questo prodotto
File Dimensione Formato  
Bury_Polynomial_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF   Contatta l'autore
Bury_preprint_Polynomial_2021.pdf

accesso aperto

Note: DOI 10.1007/s00453-020-00787-3
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 393.49 kB
Formato Adobe PDF
393.49 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1495485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact