In this paper, we investigate algorithms for finding centers of a given collection N of sets. In particular, we focus on metric rational set similarities, a broad class of similarity measures including Jaccard and Hamming. A rational set similarity S is called metric if D= 1 - S is a distance function. We study the 1-center problem on these metric spaces. The problem consists of finding a set C that minimizes the maximum distance of C to any set of N. We present a general framework that computes a (1 + ε) approximation for any metric rational set similarity.
Polynomial Time Approximation Schemes for All 1-Center Problems on Metric Rational Set Similarities / Bury, M.; Gentili, M.; Schwiegelshohn, C.; Sorella, M.. - In: ALGORITHMICA. - ISSN 0178-4617. - 83:5(2021), pp. 1371-1392. [10.1007/s00453-020-00787-3]
Polynomial Time Approximation Schemes for All 1-Center Problems on Metric Rational Set Similarities
Gentili M.
;Schwiegelshohn C.
;Sorella M.
2021
Abstract
In this paper, we investigate algorithms for finding centers of a given collection N of sets. In particular, we focus on metric rational set similarities, a broad class of similarity measures including Jaccard and Hamming. A rational set similarity S is called metric if D= 1 - S is a distance function. We study the 1-center problem on these metric spaces. The problem consists of finding a set C that minimizes the maximum distance of C to any set of N. We present a general framework that computes a (1 + ε) approximation for any metric rational set similarity.File | Dimensione | Formato | |
---|---|---|---|
Bury_Polynomial_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.4 MB
Formato
Adobe PDF
|
2.4 MB | Adobe PDF | Contatta l'autore |
Bury_preprint_Polynomial_2021.pdf
accesso aperto
Note: DOI 10.1007/s00453-020-00787-3
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
393.49 kB
Formato
Adobe PDF
|
393.49 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.