Semantic Role Labeling (SRL) is deeply dependent on complex linguistic resources and sophisticated neural models, which makes the task difficult to approach for non-experts. To address this issue we present a new platform named Intelligible Verbs and Roles (InVeRo). This platform provides access to a new verb resource, VerbAtlas, and a state-of-the-art pre-trained implementation of a neural, span-based architecture for SRL. Both the resource and the system provide human-readable verb sense and semantic role information, with an easy to use Web interface and RESTful APIs available at http://nlp.uniroma1.it/invero.

InVeRo: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles / Conia, Simone; Brignone, Fabrizio; Zanfardino, Davide; Navigli, Roberto. - (2020), pp. 77-84. (Intervento presentato al convegno Empirical Methods in Natural Language Processing tenutosi a Online) [10.18653/v1/2020.emnlp-demos.11].

InVeRo: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles

Conia, Simone
Primo
;
Brignone, Fabrizio
Secondo
;
Navigli, Roberto
Ultimo
2020

Abstract

Semantic Role Labeling (SRL) is deeply dependent on complex linguistic resources and sophisticated neural models, which makes the task difficult to approach for non-experts. To address this issue we present a new platform named Intelligible Verbs and Roles (InVeRo). This platform provides access to a new verb resource, VerbAtlas, and a state-of-the-art pre-trained implementation of a neural, span-based architecture for SRL. Both the resource and the system provide human-readable verb sense and semantic role information, with an easy to use Web interface and RESTful APIs available at http://nlp.uniroma1.it/invero.
2020
Empirical Methods in Natural Language Processing
natural language processing; semantic role labeling; deep learning; artificial intelligence;
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
InVeRo: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles / Conia, Simone; Brignone, Fabrizio; Zanfardino, Davide; Navigli, Roberto. - (2020), pp. 77-84. (Intervento presentato al convegno Empirical Methods in Natural Language Processing tenutosi a Online) [10.18653/v1/2020.emnlp-demos.11].
File allegati a questo prodotto
File Dimensione Formato  
Conia_InVeRo_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1494217
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact