The deposition of barium fluoride thin and ultra-thin films on gallium arsenide substrates was performed by electron beam evaporation for analyzing the influence of film thickness and chemical composition on the work function of the resulting heterostructure. X-ray photoemission spectroscopy combined with ultraviolet photoemission spectroscopy measurements reveals that films of 2 nm nominal thickness and Ba/F = 1.0 stoichiometry ratio induce the achievement of a significantly low work function of 2.1 eV to the BaFx/GaAs heterostructure. The significant reduction of the work function at least down to 3.0 eV is confirmed by a test thermionic converter operating at a cathode temperature of 1385 °C, where the heterostructure was applied as anode. The low work function, together with a negligible optical absorption, makes feasible the practical application of barium fluoride coatings on GaAs within hybrid thermionic-thermophotovoltaic devices.
Ultra-thin films of barium fluoride with low work function for thermionic-thermophotovoltaic applications / Serpente, V.; Bellucci, A.; Girolami, M.; Mastellone, M.; Mezzi, A.; Kaciulis, S.; Carducci, R.; Polini, R.; Valentini, V.; Trucchi, D. M.. - In: MATERIALS CHEMISTRY AND PHYSICS. - ISSN 0254-0584. - 249:(2020). [10.1016/j.matchemphys.2020.122989]
Ultra-thin films of barium fluoride with low work function for thermionic-thermophotovoltaic applications
Mastellone M.;
2020
Abstract
The deposition of barium fluoride thin and ultra-thin films on gallium arsenide substrates was performed by electron beam evaporation for analyzing the influence of film thickness and chemical composition on the work function of the resulting heterostructure. X-ray photoemission spectroscopy combined with ultraviolet photoemission spectroscopy measurements reveals that films of 2 nm nominal thickness and Ba/F = 1.0 stoichiometry ratio induce the achievement of a significantly low work function of 2.1 eV to the BaFx/GaAs heterostructure. The significant reduction of the work function at least down to 3.0 eV is confirmed by a test thermionic converter operating at a cathode temperature of 1385 °C, where the heterostructure was applied as anode. The low work function, together with a negligible optical absorption, makes feasible the practical application of barium fluoride coatings on GaAs within hybrid thermionic-thermophotovoltaic devices.File | Dimensione | Formato | |
---|---|---|---|
Serpente_UltraThin_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.