We report on fs laser structuring and graphitization of diamond and experimental characterization of its THz response. A full characterization of graphitized, conductive layer generated by laser irradiation is carried out by performing scanning-electron microscopy, Raman spectroscopy and electrical measurements. The transmittance of the laser textured diamond samples, both with the graphitic overlayer and after selective oxidizing etching, is analyzed in the (0.25 ÷ 6.0) THz spectral range. A significant selective absorption of the graphitized overlayer towards polarized THz radiation is demonstrated, which is associated to the formation of graphitic laser induced periodic surface structures. This anisotropy allows conceiving compact passive metasurfaces based on conductive/dielectric patterns on the diamond plate surface for the development of robust, lightweight and broadband THz optical components.
All-carbon THz components based on laser-treated diamond / Amoruso, S.; Andreone, A.; Bellucci, A.; Koral, C.; Girolami, M.; Mastellone, M.; Mou, S.; Orlando, S.; Papari, G. P.; Paparo, D.; Polini, R.; Rubano, A.; Santagata, A.; Serpente, V.; Valentini, V.; Trucchi, D. M.. - In: CARBON. - ISSN 0008-6223. - 163:(2020), pp. 197-201. [10.1016/j.carbon.2020.03.023]
All-carbon THz components based on laser-treated diamond
Mastellone M.;
2020
Abstract
We report on fs laser structuring and graphitization of diamond and experimental characterization of its THz response. A full characterization of graphitized, conductive layer generated by laser irradiation is carried out by performing scanning-electron microscopy, Raman spectroscopy and electrical measurements. The transmittance of the laser textured diamond samples, both with the graphitic overlayer and after selective oxidizing etching, is analyzed in the (0.25 ÷ 6.0) THz spectral range. A significant selective absorption of the graphitized overlayer towards polarized THz radiation is demonstrated, which is associated to the formation of graphitic laser induced periodic surface structures. This anisotropy allows conceiving compact passive metasurfaces based on conductive/dielectric patterns on the diamond plate surface for the development of robust, lightweight and broadband THz optical components.File | Dimensione | Formato | |
---|---|---|---|
Amoruso_allcarbon_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.