Three spatial clustering approaches of a high-Reynolds number transient buoyant jet in a linearly stratified environment are applied along with proper orthogonal decomposition to identify similar/consistent regions in the domain of interest. The velocity fields analyzed are obtained from an experimental test with large scale, time-resolved, particle image velocimetry (PIV) measurements. Clustering is performed by the k-means method considering: (a) crosssection velocity profiles, (b) point-wise energy spectra, and (c) point-wise Reynolds stress tensor components. Three metrics are used for the assessment of clustering approaches, namely: (a) within-cluster sum of squares, (b) average silhouette, and (c) within-cluster number of POD modes required to resolve prescribed levels of total variance/energy. Results are promising and lay the foundation for an in depth analysis of local features of complex flows as well as the formulation of efficient reduced order models.

PIV data clustering of a buoyant jet in a stratified environment / Serani, Andrea; Durante, Danilo; Diez, Matteo; D'Agostino, Danny; Clement, Simon; Badra, Joseph; Andre, Matthieu; Habukawa, Masayuki; Bardet, Philippe. - (2019). (Intervento presentato al convegno AIAA Scitech 2019 Forum tenutosi a San Diego; Stati Uniti) [10.2514/6.2019-1830].

PIV data clustering of a buoyant jet in a stratified environment

Danny D'Agostino;
2019

Abstract

Three spatial clustering approaches of a high-Reynolds number transient buoyant jet in a linearly stratified environment are applied along with proper orthogonal decomposition to identify similar/consistent regions in the domain of interest. The velocity fields analyzed are obtained from an experimental test with large scale, time-resolved, particle image velocimetry (PIV) measurements. Clustering is performed by the k-means method considering: (a) crosssection velocity profiles, (b) point-wise energy spectra, and (c) point-wise Reynolds stress tensor components. Three metrics are used for the assessment of clustering approaches, namely: (a) within-cluster sum of squares, (b) average silhouette, and (c) within-cluster number of POD modes required to resolve prescribed levels of total variance/energy. Results are promising and lay the foundation for an in depth analysis of local features of complex flows as well as the formulation of efficient reduced order models.
2019
AIAA Scitech 2019 Forum
Clustering; Turbulent flows; PIV;
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
PIV data clustering of a buoyant jet in a stratified environment / Serani, Andrea; Durante, Danilo; Diez, Matteo; D'Agostino, Danny; Clement, Simon; Badra, Joseph; Andre, Matthieu; Habukawa, Masayuki; Bardet, Philippe. - (2019). (Intervento presentato al convegno AIAA Scitech 2019 Forum tenutosi a San Diego; Stati Uniti) [10.2514/6.2019-1830].
File allegati a questo prodotto
File Dimensione Formato  
Serani_postprint_PIV_2019.pdf

accesso aperto

Note: DOI 10.2514/6.2019-1830
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 16.1 MB
Formato Adobe PDF
16.1 MB Adobe PDF
Serani_PIV_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 581.03 kB
Formato Adobe PDF
581.03 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1493225
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact