In this paper we tackle the issue of measuring and understanding the visitors’ dynamics in a crowded museum in order to create and calibrate a predictive mathematical model. The model is then used as a tool to manage, control and optimize the fruition of the museum. Our contribution comes with one successful use case, the Galleria Borghese in Rome, Italy.

Forecasting visitors’ behaviour in crowded museums / Balzotti, Caterina; Briani, Maya; Corbetta, Alessandro; Cristiani, Emiliano; Minozzi, Marina; Natalini, Roberto; Suriano, Sara; Toschi, Federico. - In: COLLECTIVE DYNAMICS. - ISSN 2366-8539. - 5:(2020). (Intervento presentato al convegno Proceedings from the 9th International Conference on Pedestrian and Evacuation Dynamics (PED2018) tenutosi a Lund, Sweden) [10.17815/CD.2020.82].

Forecasting visitors’ behaviour in crowded museums

Balzotti, Caterina;Cristiani, Emiliano;
2020

Abstract

In this paper we tackle the issue of measuring and understanding the visitors’ dynamics in a crowded museum in order to create and calibrate a predictive mathematical model. The model is then used as a tool to manage, control and optimize the fruition of the museum. Our contribution comes with one successful use case, the Galleria Borghese in Rome, Italy.
2020
Proceedings from the 9th International Conference on Pedestrian and Evacuation Dynamics (PED2018)
Pedestrian modelling, complex behaviour, floor usage, data acquisition, museums
04 Pubblicazione in atti di convegno::04c Atto di convegno in rivista
Forecasting visitors’ behaviour in crowded museums / Balzotti, Caterina; Briani, Maya; Corbetta, Alessandro; Cristiani, Emiliano; Minozzi, Marina; Natalini, Roberto; Suriano, Sara; Toschi, Federico. - In: COLLECTIVE DYNAMICS. - ISSN 2366-8539. - 5:(2020). (Intervento presentato al convegno Proceedings from the 9th International Conference on Pedestrian and Evacuation Dynamics (PED2018) tenutosi a Lund, Sweden) [10.17815/CD.2020.82].
File allegati a questo prodotto
File Dimensione Formato  
Balzotti_museums_2020.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 902.62 kB
Formato Adobe PDF
902.62 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1491715
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact