Motivated by the collective behavior of biological swarms, we study the critical dynamics of field theories with coupling between order parameter and conjugate momentum in the presence of dissipation. Under a fixed-network approximation, we perform a dynamical renormalization group calculation at one loop in the near-critical disordered region, and we show that the violation of momentum conservation generates a crossover between an unstable fixed point, characterized by a dynamic critical exponent z=d/2, and a stable fixed point with z=2. Interestingly, the two fixed points have different upper critical dimensions. The interplay between these two fixed points gives rise to a crossover in the critical dynamics of the system, characterized by a crossover exponent κ=4/d. The crossover is regulated by a conservation length scale R0, given by the ratio between the transport coefficient and the effective friction, which is larger as the dissipation is smaller: Beyond R0, the stable fixed point dominates, while at shorter distances dynamics is ruled by the unstable fixed point and critical exponent, a behavior which is all the more relevant in finite-size systems with weak dissipation. We run numerical simulations in three dimensions and find a crossover between the exponents z=3/2 and z=2 in the critical slowdown of the system, confirming the renormalization group results. From the biophysical point of view, our calculation indicates that in finite-size biological groups mode coupling terms in the equation of motion can significantly change the dynamical critical exponents even in the presence of dissipation, a step toward reconciling theory with experiments in natural swarms. Moreover, our result provides the scale within which fully conservative Bose-Einstein condensation is a good approximation in systems with weak symmetry-breaking terms violating number conservation, as quantum magnets or photon gases.

Renormalization group crossover in the critical dynamics of field theories with mode coupling terms / Cavagna, A.; Di Carlo, L.; Giardina, I.; Grandinetti, L.; Grigera, T. S.; Pisegna, G.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 100:6(2019), p. 062130. [10.1103/PhysRevE.100.062130]

Renormalization group crossover in the critical dynamics of field theories with mode coupling terms

Cavagna A.;Di Carlo L.
;
Giardina I.;Grigera T. S.;Pisegna G.
2019

Abstract

Motivated by the collective behavior of biological swarms, we study the critical dynamics of field theories with coupling between order parameter and conjugate momentum in the presence of dissipation. Under a fixed-network approximation, we perform a dynamical renormalization group calculation at one loop in the near-critical disordered region, and we show that the violation of momentum conservation generates a crossover between an unstable fixed point, characterized by a dynamic critical exponent z=d/2, and a stable fixed point with z=2. Interestingly, the two fixed points have different upper critical dimensions. The interplay between these two fixed points gives rise to a crossover in the critical dynamics of the system, characterized by a crossover exponent κ=4/d. The crossover is regulated by a conservation length scale R0, given by the ratio between the transport coefficient and the effective friction, which is larger as the dissipation is smaller: Beyond R0, the stable fixed point dominates, while at shorter distances dynamics is ruled by the unstable fixed point and critical exponent, a behavior which is all the more relevant in finite-size systems with weak dissipation. We run numerical simulations in three dimensions and find a crossover between the exponents z=3/2 and z=2 in the critical slowdown of the system, confirming the renormalization group results. From the biophysical point of view, our calculation indicates that in finite-size biological groups mode coupling terms in the equation of motion can significantly change the dynamical critical exponents even in the presence of dissipation, a step toward reconciling theory with experiments in natural swarms. Moreover, our result provides the scale within which fully conservative Bose-Einstein condensation is a good approximation in systems with weak symmetry-breaking terms violating number conservation, as quantum magnets or photon gases.
2019
Dynamical renormalization group; mode coupling theory; crossover
01 Pubblicazione su rivista::01a Articolo in rivista
Renormalization group crossover in the critical dynamics of field theories with mode coupling terms / Cavagna, A.; Di Carlo, L.; Giardina, I.; Grandinetti, L.; Grigera, T. S.; Pisegna, G.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 100:6(2019), p. 062130. [10.1103/PhysRevE.100.062130]
File allegati a questo prodotto
File Dimensione Formato  
Cavagna_Field-theories.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1491426
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact