Steroid hormones, including glucocorticoids and androgens, exert a wide variety of effects in the body across almost all tissues. The steroid A-ring 5beta-reductase (AKR1D1) is expressed in human liver and testes, and three splice variants have been identified (AKR1D1-001, AKR1D1-002, AKR1D1-006). Amongst these, AKR1D1-002 is the best described; it modulates steroid hormone availability and catalyses an important step in bile acid biosynthesis. However, specific activity and expression of AKR1D1-001 and AKR1D1-006 are unknown. Expression of AKR1D1 variants were measured in human liver biopsies and hepatoma cell lines by qPCR. Their three-dimensional (3D) structures were predicted using in silico approaches. AKR1D1 variants were over-expressed in HEK293 cells, and successful overexpression confirmed by qPCR and western blotting. Cells were treated with either cortisol, dexamethasone, prednisolone, testosterone or androstenedione, and steroid hormone clearance was measured by mass spectrometry. Glucocorticoid and androgen receptor activation were determined by luciferase reporter assays. AKR1D1-002 and AKR1D1-001 are expressed in human liver, and only AKR1D1-006 is expressed in human testes. Following over-expression, AKR1D1-001 and AKR1D1-006 protein levels were lower than AKR1D1-002, but significantly increased following treatment with the proteasomal inhibitor, MG-132. AKR1D1-002 efficiently metabolised glucocorticoids and androgens and decreased receptor activation. AKR1D1-001 and AKR1D1-006 poorly metabolised dexamethasone, but neither protein metabolised cortisol, prednisolone, testosterone or androstenedione. We have demonstrated the differential expression and role of AKR1D1 variants in steroid hormone clearance and receptor activation in vitro. AKR1D1-002 is the predominant functional protein in steroidogenic and metabolic tissues. In addition, AKR1D1-001 and AKR1D1-006 may have a limited, steroid-specific role in the regulation of dexamethasone action.

Differential activity and expression of human 5β-reductase (AKR1D1) splice variants / Appanna, Nathan; Gibson, Hylton; Gangitano, Elena; Dempster, Niall J; Morris, Karen; George, Sherly; Arvaniti, Anastasia; Gathercole, Laura L; Keevil, Brian G; Penning, Trevor M; Storbeck, Karl-Heinz; Tomlinson, Jeremy W; Nikolaou, Nikolaos. - In: JOURNAL OF MOLECULAR ENDOCRINOLOGY. - ISSN 0952-5041. - 66:3(2021), pp. 181-194. [10.1530/JME-20-0160]

Differential activity and expression of human 5β-reductase (AKR1D1) splice variants

Gangitano, Elena;
2021

Abstract

Steroid hormones, including glucocorticoids and androgens, exert a wide variety of effects in the body across almost all tissues. The steroid A-ring 5beta-reductase (AKR1D1) is expressed in human liver and testes, and three splice variants have been identified (AKR1D1-001, AKR1D1-002, AKR1D1-006). Amongst these, AKR1D1-002 is the best described; it modulates steroid hormone availability and catalyses an important step in bile acid biosynthesis. However, specific activity and expression of AKR1D1-001 and AKR1D1-006 are unknown. Expression of AKR1D1 variants were measured in human liver biopsies and hepatoma cell lines by qPCR. Their three-dimensional (3D) structures were predicted using in silico approaches. AKR1D1 variants were over-expressed in HEK293 cells, and successful overexpression confirmed by qPCR and western blotting. Cells were treated with either cortisol, dexamethasone, prednisolone, testosterone or androstenedione, and steroid hormone clearance was measured by mass spectrometry. Glucocorticoid and androgen receptor activation were determined by luciferase reporter assays. AKR1D1-002 and AKR1D1-001 are expressed in human liver, and only AKR1D1-006 is expressed in human testes. Following over-expression, AKR1D1-001 and AKR1D1-006 protein levels were lower than AKR1D1-002, but significantly increased following treatment with the proteasomal inhibitor, MG-132. AKR1D1-002 efficiently metabolised glucocorticoids and androgens and decreased receptor activation. AKR1D1-001 and AKR1D1-006 poorly metabolised dexamethasone, but neither protein metabolised cortisol, prednisolone, testosterone or androstenedione. We have demonstrated the differential expression and role of AKR1D1 variants in steroid hormone clearance and receptor activation in vitro. AKR1D1-002 is the predominant functional protein in steroidogenic and metabolic tissues. In addition, AKR1D1-001 and AKR1D1-006 may have a limited, steroid-specific role in the regulation of dexamethasone action.
2021
AKR1D1; 5beta-reductase; AKR1D1 variants; steroids
01 Pubblicazione su rivista::01a Articolo in rivista
Differential activity and expression of human 5β-reductase (AKR1D1) splice variants / Appanna, Nathan; Gibson, Hylton; Gangitano, Elena; Dempster, Niall J; Morris, Karen; George, Sherly; Arvaniti, Anastasia; Gathercole, Laura L; Keevil, Brian G; Penning, Trevor M; Storbeck, Karl-Heinz; Tomlinson, Jeremy W; Nikolaou, Nikolaos. - In: JOURNAL OF MOLECULAR ENDOCRINOLOGY. - ISSN 0952-5041. - 66:3(2021), pp. 181-194. [10.1530/JME-20-0160]
File allegati a questo prodotto
File Dimensione Formato  
Appanna_Differential-activity_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1490788
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact