The population-level case-fatality rate (CFR) associated with COVID-19 varies substantially, both across countries at any given time and within countries over time. We analyze the contribution of two key determinants of the variation in the observed CFR: the age-structure of diagnosed infection cases and age-specific case-fatality rates. We use data on diagnosed COVID-19 cases and death counts attributable to COVID-19 by age for China, Germany, Italy, South Korea, Spain, the United States, and New York City. We calculate the CFR for each population at the latest data point and also for Italy, Germany, Spain, and New York City over time. We use demographic decomposition to break the difference between CFRs into unique contributions arising from the age-structure of confirmed cases and the age-specific case-fatality. In late June 2020, CFRs varied from 2.2% in South Korea to 14.0% in Italy. The age-structure of detected cases often explains more than two-thirds of cross-country variation in the CFR. In Italy, the CFR increased from 4.2% to 14.0% between March 9 and June 30, 2020, and more than 90% of the change was due to increasing age-specific case-fatality rates. The importance of the age-structure of confirmed cases likely reflects several factors, including different testing regimes and differences in transmission trajectories; while increasing age-specific case-fatality rates in Italy could indicate other factors, such as the worsening health outcomes of those infected with COVID-19. Our findings lend support to recommendations for data to be disaggregated by age, and potentially other variables, to facilitate a better understanding of population-level differences in CFRs. They also show the need for well-designed seroprevalence studies to ascertain the extent to which differences in testing regimes drive differences in the age-structure of detected cases.

Monitoring trends and differences in COVID-19 case-fatality rates using decomposition methods: Contributions of age structure and age-specific fatality / Dudel, C.; Riffe, T.; Acosta, E.; van Raalte, A.; Strozza, C.; Myrskyla, M.. - In: PLOS ONE. - ISSN 1932-6203. - 15:9(2020), p. e0238904. [10.1371/journal.pone.0238904]

Monitoring trends and differences in COVID-19 case-fatality rates using decomposition methods: Contributions of age structure and age-specific fatality

Strozza C.;
2020

Abstract

The population-level case-fatality rate (CFR) associated with COVID-19 varies substantially, both across countries at any given time and within countries over time. We analyze the contribution of two key determinants of the variation in the observed CFR: the age-structure of diagnosed infection cases and age-specific case-fatality rates. We use data on diagnosed COVID-19 cases and death counts attributable to COVID-19 by age for China, Germany, Italy, South Korea, Spain, the United States, and New York City. We calculate the CFR for each population at the latest data point and also for Italy, Germany, Spain, and New York City over time. We use demographic decomposition to break the difference between CFRs into unique contributions arising from the age-structure of confirmed cases and the age-specific case-fatality. In late June 2020, CFRs varied from 2.2% in South Korea to 14.0% in Italy. The age-structure of detected cases often explains more than two-thirds of cross-country variation in the CFR. In Italy, the CFR increased from 4.2% to 14.0% between March 9 and June 30, 2020, and more than 90% of the change was due to increasing age-specific case-fatality rates. The importance of the age-structure of confirmed cases likely reflects several factors, including different testing regimes and differences in transmission trajectories; while increasing age-specific case-fatality rates in Italy could indicate other factors, such as the worsening health outcomes of those infected with COVID-19. Our findings lend support to recommendations for data to be disaggregated by age, and potentially other variables, to facilitate a better understanding of population-level differences in CFRs. They also show the need for well-designed seroprevalence studies to ascertain the extent to which differences in testing regimes drive differences in the age-structure of detected cases.
2020
Age Factors; Betacoronavirus; COVID-19; Coronavirus Infections; Databases, Factual; Humans; Pandemics; Pneumonia, Viral; SARS-CoV-2; Survival Rate
01 Pubblicazione su rivista::01a Articolo in rivista
Monitoring trends and differences in COVID-19 case-fatality rates using decomposition methods: Contributions of age structure and age-specific fatality / Dudel, C.; Riffe, T.; Acosta, E.; van Raalte, A.; Strozza, C.; Myrskyla, M.. - In: PLOS ONE. - ISSN 1932-6203. - 15:9(2020), p. e0238904. [10.1371/journal.pone.0238904]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1488732
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 57
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 72
social impact