Experimental results and simulation models show that crystals might play a relevant role for the development of new generations of high-energy and high-intensity particle accelerators and might disclose innovative possibilities at existing ones. In this paper we describe the most advanced manufacturing techniques of crystals suitable for operations at ultrahigh energy and ultrahigh intensity particle accelerators, reporting as an example of potential application the collimation of the particle beams circulating in the Large Hadron Collider at CERN, which will be upgraded through the addition of bent crystals in the frame of the High Luminosity Large Hadron Collider project.
Silicon crystals for steering high-intensity particle beams at ultrahigh-energy accelerators / Mazzolari, A.; Romagnoni, M.; Bagli, E.; Bandiera, L.; Baricordi, S.; Camattari, R.; Casotti, D.; Tamisari, M.; Sytov, A.; Guidi, V.; Cavoto, G.; Carturan, S. M.; De Salvador, D.; Balbo, A.; Cruciani, G.; Tran Caliste, Thu Nhi; Verbeni, R.; Pastrone, N.; Lanzoni, L.; Rossall, A.; van den Berg, J. A.; Jenkins, R.; Dumas, P.. - In: PHYSICAL REVIEW RESEARCH. - ISSN 2643-1564. - 3:1(2021). [10.1103/PhysRevResearch.3.013108]
Silicon crystals for steering high-intensity particle beams at ultrahigh-energy accelerators
Cavoto, G.Funding Acquisition
;
2021
Abstract
Experimental results and simulation models show that crystals might play a relevant role for the development of new generations of high-energy and high-intensity particle accelerators and might disclose innovative possibilities at existing ones. In this paper we describe the most advanced manufacturing techniques of crystals suitable for operations at ultrahigh energy and ultrahigh intensity particle accelerators, reporting as an example of potential application the collimation of the particle beams circulating in the Large Hadron Collider at CERN, which will be upgraded through the addition of bent crystals in the frame of the High Luminosity Large Hadron Collider project.File | Dimensione | Formato | |
---|---|---|---|
Mazzolari_Silicon_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.