In vitro HIV-1 infection induced a significant decrease in intracellular reduced glutathione (GSH) in human macrophages. Such a decrease was observed at the time of infection corresponding to maximum release of virus from infected cells and was not related to cell cytotoxicity. GSH los was not related to its oxidation or leakage through the cell membrane. Inhibition of intracellular GSH synthesis by buthionine sulfoximine (BSO) did not further decrease GSH levels with respect to the decrease caused by HIV alone. However, treatment of macrophages with BSO significantly increased the HIV yield in the supernatant. Exogenous GSH strongly suppressed the production of p24 gag protein as well as the virus infectivity. Previous observations with other RNA and DNA viruses consistently showed that GSH antiviral effect occurred at late stages of virus replication and was related to the selective decrease of specific glycoproteins, such as gp120, which are particularly rich in disulfide bonds.
Intracellular GSH content and HIV replication in human macrophages / E., Garaci; Palamara, ANNA TERESA; Ciriolo, M. R.; C., D'Agostini; Abdel Latif, M. S.; S., Aquaro; E., Lafavia; G., Rotilio. - In: JOURNAL OF LEUKOCYTE BIOLOGY. - ISSN 0741-5400. - 62:(1997), pp. 54-59.
Intracellular GSH content and HIV replication in human macrophages
PALAMARA, ANNA TERESA;
1997
Abstract
In vitro HIV-1 infection induced a significant decrease in intracellular reduced glutathione (GSH) in human macrophages. Such a decrease was observed at the time of infection corresponding to maximum release of virus from infected cells and was not related to cell cytotoxicity. GSH los was not related to its oxidation or leakage through the cell membrane. Inhibition of intracellular GSH synthesis by buthionine sulfoximine (BSO) did not further decrease GSH levels with respect to the decrease caused by HIV alone. However, treatment of macrophages with BSO significantly increased the HIV yield in the supernatant. Exogenous GSH strongly suppressed the production of p24 gag protein as well as the virus infectivity. Previous observations with other RNA and DNA viruses consistently showed that GSH antiviral effect occurred at late stages of virus replication and was related to the selective decrease of specific glycoproteins, such as gp120, which are particularly rich in disulfide bonds.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.