In this paper we prove a lower semicontinuity result of Reshetnyak type for a class of functionals which appear in models for small-strain elasto-plasticity coupled with damage. To do so we characterise the limit of measures αkEuk with respect to the weak convergence αk⇀ α in W1,n(Ω) and the weak∗ convergence uk⇀ ∗ u in BD(Ω) , E denoting the symmetrised gradient. A concentration compactness argument shows that the limit has the form αEu+η, with η supported on an at most countable set.

A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n / Crismale, V.; Orlando, G.. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 25:2(2018). [10.1007/s00030-018-0507-9]

A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n

Crismale V.;
2018

Abstract

In this paper we prove a lower semicontinuity result of Reshetnyak type for a class of functionals which appear in models for small-strain elasto-plasticity coupled with damage. To do so we characterise the limit of measures αkEuk with respect to the weak convergence αk⇀ α in W1,n(Ω) and the weak∗ convergence uk⇀ ∗ u in BD(Ω) , E denoting the symmetrised gradient. A concentration compactness argument shows that the limit has the form αEu+η, with η supported on an at most countable set.
2018
Damage; elasto-plasticity; lower semicontinuity; reshetnyak theorem
01 Pubblicazione su rivista::01a Articolo in rivista
A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n / Crismale, V.; Orlando, G.. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 25:2(2018). [10.1007/s00030-018-0507-9]
File allegati a questo prodotto
File Dimensione Formato  
Crismale_A-reshetnyak-type_2018.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 369.39 kB
Formato Adobe PDF
369.39 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1485803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact