Aims: Treosulfan is an alkylating agent increasingly used prior to haematopoietic stem cell transplantation. The aim of this study was to develop a population pharmacokinetic (PK) model of treosulfan in paediatric haematopoietic stem cell transplantation recipients and to explore the effect of potential covariates on treosulfan PK. Also, a limited sampling model (LSM) will be developed to accurately predict treosulfan exposure suitable for a therapeutic drug monitoring setting. Methods: In this multicentre study, 91 patients, receiving a total dose of 30, 36 or 42 g/m2 treosulfan, administered over 3 consecutive days, were enrolled. A population PK model was developed and demographic factors, as well as laboratory parameters, were included as potential covariates. In addition, a LSM was developed using data from 28 patients. Results: A 2-compartment model with first order elimination best described the data. Bodyweight with allometric scaling and maturation function were identified as significant predictors of treosulfan clearance. Treosulfan clearance reaches 90% of adult values at 4 postnatal years. A model-based dosing table is presented to target an exposure of 1650 mg*h/L (population median) for different weight and age groups. Samples taken at 1.5, 4 and 7 hours after start of infusion resulted in the best limited sampling strategy. Conclusions: This study provides a treosulfan population PK model in children and captures the developmental changes in clearance. A 3-point LSM allows for accurate and precise estimation of treosulfan exposure.
Population pharmacokinetics of treosulfan in paediatric patients undergoing hematopoietic stem cell transplantation / van der Stoep, M. Y. E. C.; Zwaveling, J.; Bertaina, A.; Locatelli, F.; Guchelaar, H. J.; Lankester, A. C.; Moes, D. J. A. R.. - In: BRITISH JOURNAL OF CLINICAL PHARMACOLOGY. - ISSN 0306-5251. - 85:9(2019), pp. 2033-2044. [10.1111/bcp.13995]
Population pharmacokinetics of treosulfan in paediatric patients undergoing hematopoietic stem cell transplantation
Locatelli F.;
2019
Abstract
Aims: Treosulfan is an alkylating agent increasingly used prior to haematopoietic stem cell transplantation. The aim of this study was to develop a population pharmacokinetic (PK) model of treosulfan in paediatric haematopoietic stem cell transplantation recipients and to explore the effect of potential covariates on treosulfan PK. Also, a limited sampling model (LSM) will be developed to accurately predict treosulfan exposure suitable for a therapeutic drug monitoring setting. Methods: In this multicentre study, 91 patients, receiving a total dose of 30, 36 or 42 g/m2 treosulfan, administered over 3 consecutive days, were enrolled. A population PK model was developed and demographic factors, as well as laboratory parameters, were included as potential covariates. In addition, a LSM was developed using data from 28 patients. Results: A 2-compartment model with first order elimination best described the data. Bodyweight with allometric scaling and maturation function were identified as significant predictors of treosulfan clearance. Treosulfan clearance reaches 90% of adult values at 4 postnatal years. A model-based dosing table is presented to target an exposure of 1650 mg*h/L (population median) for different weight and age groups. Samples taken at 1.5, 4 and 7 hours after start of infusion resulted in the best limited sampling strategy. Conclusions: This study provides a treosulfan population PK model in children and captures the developmental changes in clearance. A 3-point LSM allows for accurate and precise estimation of treosulfan exposure.File | Dimensione | Formato | |
---|---|---|---|
van-der-Stoep_Population_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF | |
Vanderstoep_Population-pharmacokinetics-treosulfan_2019.pdf
accesso aperto
Note: La natura "Open access" e la corrispondente licenza CC-BY-NC Attribution Non Commercial License sono riportate in calce alla pagina 2033 del "full text" della versione editoriale allegata.
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.