Variations in reservoir seismic properties can be correlated to changes in saturated-fluid properties. Thus, the determination of variation in petrophysical properties of carbonate-bearing rocks is of interest to the oil exploration industry because unconventional oils, such as bitumen (HHC), are emerging as an alternative hydrocarbon reserve. We have investigated the temperature effects on laboratory seismic wave velocities of HHC-bearing carbonate rocks belonging to the Bolognano Formation (Majella Mountain, central Italy), which can be defined as a natural laboratory to study carbonate reservoir properties. We conduct an initial characterization in terms of porosity and density for the carbonate-bearing samples and then density and viscosity measurements for the residual HHC, extracted by HCl dissolution of the hosting rock. Acoustic wave velocities are recorded from ambient temperature to 90°C. Our acoustic velocity data point out an inverse relationship with temperature, and compressional (P) and shear (S) wave velocities show a distinct trend with increasing temperature depending on the amount of HHC content. Indeed, samples with the highest HHC content show a larger gradient of velocity changes in the temperature range of approximately 50°C-60°C, suggesting that the bitumen can be in a fluid state. Conversely, below approximately 50°C, the velocity gradient is lower because, at this temperature, bitumen can change its phase in a solid state. We also propose a theoretical model to predict the P-wave velocity change at different initial porosities for HHC-saturated samples suggesting that the velocity change mainly is related to the absolute volume of HHC.
Petrophysical properties variation of bitumen-bearing carbonates at increasing temperatures from laboratory to model / Ruggieri, R.; Trippetta, F.. - In: GEOPHYSICS. - ISSN 0016-8033. - 85:5(2020), pp. 297-308. [10.1190/geo2019-0790.1]
Petrophysical properties variation of bitumen-bearing carbonates at increasing temperatures from laboratory to model
Ruggieri R.
Primo
;Trippetta F.Secondo
2020
Abstract
Variations in reservoir seismic properties can be correlated to changes in saturated-fluid properties. Thus, the determination of variation in petrophysical properties of carbonate-bearing rocks is of interest to the oil exploration industry because unconventional oils, such as bitumen (HHC), are emerging as an alternative hydrocarbon reserve. We have investigated the temperature effects on laboratory seismic wave velocities of HHC-bearing carbonate rocks belonging to the Bolognano Formation (Majella Mountain, central Italy), which can be defined as a natural laboratory to study carbonate reservoir properties. We conduct an initial characterization in terms of porosity and density for the carbonate-bearing samples and then density and viscosity measurements for the residual HHC, extracted by HCl dissolution of the hosting rock. Acoustic wave velocities are recorded from ambient temperature to 90°C. Our acoustic velocity data point out an inverse relationship with temperature, and compressional (P) and shear (S) wave velocities show a distinct trend with increasing temperature depending on the amount of HHC content. Indeed, samples with the highest HHC content show a larger gradient of velocity changes in the temperature range of approximately 50°C-60°C, suggesting that the bitumen can be in a fluid state. Conversely, below approximately 50°C, the velocity gradient is lower because, at this temperature, bitumen can change its phase in a solid state. We also propose a theoretical model to predict the P-wave velocity change at different initial porosities for HHC-saturated samples suggesting that the velocity change mainly is related to the absolute volume of HHC.File | Dimensione | Formato | |
---|---|---|---|
Petrohoysical_Ruggeri_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.33 MB
Formato
Adobe PDF
|
4.33 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.