The understanding and treatment of psychiatric disorders, which are known to be neurobiologically and clinically heterogeneous, could benefit from the data-driven identification of disease subtypes. Here, we report the identification of two clinically relevant subtypes of post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) on the basis of robust and distinct functional connectivity patterns, prominently within the frontoparietal control network and the default mode network. We identified the disease subtypes by analysing, via unsupervised and supervised machine learning, the power-envelope-based connectivity of signals reconstructed from high-density resting-state electroencephalography in four datasets of patients with PTSD and MDD, and show that the subtypes are transferable across independent datasets recorded under different conditions. The subtype whose functional connectivity differed most from those of healthy controls was less responsive to psychotherapy treatment for PTSD and failed to respond to an antidepressant medication for MDD. By contrast, both subtypes responded equally well to two different forms of repetitive transcranial magnetic stimulation therapy for MDD. Our data-driven approach may constitute a generalizable solution for connectome-based diagnosis.

Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography / Zhang, Yu; Wu, Wei; Toll, Russell T; Naparstek, Sharon; Maron-Katz, Adi; Watts, Mallissa; Gordon, Joseph; Jeong, Jisoo; Astolfi, Laura; Shpigel, Emmanuel; Longwell, Parker; Sarhadi, Kamron; El-Said, Dawlat; Li, Yuanqing; Cooper, Crystal; Chin-Fatt, Cherise; Arns, Martijn; Goodkind, Madeleine S; Trivedi, Madhukar H; Marmar, Charles R; Etkin, Amit. - In: NATURE BIOMEDICAL ENGINEERING. - ISSN 2157-846X. - 5:4(2021), pp. 309-323. [10.1038/s41551-020-00614-8]

Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography

Astolfi, Laura;
2021

Abstract

The understanding and treatment of psychiatric disorders, which are known to be neurobiologically and clinically heterogeneous, could benefit from the data-driven identification of disease subtypes. Here, we report the identification of two clinically relevant subtypes of post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) on the basis of robust and distinct functional connectivity patterns, prominently within the frontoparietal control network and the default mode network. We identified the disease subtypes by analysing, via unsupervised and supervised machine learning, the power-envelope-based connectivity of signals reconstructed from high-density resting-state electroencephalography in four datasets of patients with PTSD and MDD, and show that the subtypes are transferable across independent datasets recorded under different conditions. The subtype whose functional connectivity differed most from those of healthy controls was less responsive to psychotherapy treatment for PTSD and failed to respond to an antidepressant medication for MDD. By contrast, both subtypes responded equally well to two different forms of repetitive transcranial magnetic stimulation therapy for MDD. Our data-driven approach may constitute a generalizable solution for connectome-based diagnosis.
2021
brain functional connectivity; psychiatric disorders; high-density eeg
01 Pubblicazione su rivista::01a Articolo in rivista
Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography / Zhang, Yu; Wu, Wei; Toll, Russell T; Naparstek, Sharon; Maron-Katz, Adi; Watts, Mallissa; Gordon, Joseph; Jeong, Jisoo; Astolfi, Laura; Shpigel, Emmanuel; Longwell, Parker; Sarhadi, Kamron; El-Said, Dawlat; Li, Yuanqing; Cooper, Crystal; Chin-Fatt, Cherise; Arns, Martijn; Goodkind, Madeleine S; Trivedi, Madhukar H; Marmar, Charles R; Etkin, Amit. - In: NATURE BIOMEDICAL ENGINEERING. - ISSN 2157-846X. - 5:4(2021), pp. 309-323. [10.1038/s41551-020-00614-8]
File allegati a questo prodotto
File Dimensione Formato  
Zhang_Identification_2021.pdf

solo gestori archivio

Note: Article in press
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.93 MB
Formato Adobe PDF
8.93 MB Adobe PDF   Contatta l'autore
Zhang_preprint_Identification_2021.pdf

accesso aperto

Note: https://www.nature.com/articles/s41551-020-00614-8
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 17.59 MB
Formato Adobe PDF
17.59 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1478348
Citazioni
  • ???jsp.display-item.citation.pmc??? 51
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 118
social impact