This paper presents a controller for the problem of Network Selection in 5G Networks, based on Reinforcement Learning. The problem of Network Selection and Traffic Steering is modeled as a Markov Decision Process and a Q- Learning based control solution is designed to meet 5G requirements, such as Quality of Experience (QoE) maximization, Quality of Service (QoS) assurance and load balancing. Numerical simulations preliminarily validate the proposed approach on a simulated scenario considered in the European project H2020 5G-ALLSTAR.

Traffic Steering and Network Selection in 5G Networks based on Reinforcement Learning / Delli Priscoli, Francesco; Giuseppi, Alessandro; Liberati, Francesco; Pietrabissa, Antonio. - (2020), pp. 595-601. (Intervento presentato al convegno 2020 European Control Conference (ECC) tenutosi a San Pietroburgo) [10.23919/ECC51009.2020.9143837].

Traffic Steering and Network Selection in 5G Networks based on Reinforcement Learning

Delli Priscoli, Francesco;Giuseppi, Alessandro
;
Liberati, Francesco;Pietrabissa, Antonio
2020

Abstract

This paper presents a controller for the problem of Network Selection in 5G Networks, based on Reinforcement Learning. The problem of Network Selection and Traffic Steering is modeled as a Markov Decision Process and a Q- Learning based control solution is designed to meet 5G requirements, such as Quality of Experience (QoE) maximization, Quality of Service (QoS) assurance and load balancing. Numerical simulations preliminarily validate the proposed approach on a simulated scenario considered in the European project H2020 5G-ALLSTAR.
2020
2020 European Control Conference (ECC)
5G mobile communication; learning (artificial intelligence); Markov processes; quality of experience; quality of service; resource allocation; telecommunication computing; telecommunication traffic
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Traffic Steering and Network Selection in 5G Networks based on Reinforcement Learning / Delli Priscoli, Francesco; Giuseppi, Alessandro; Liberati, Francesco; Pietrabissa, Antonio. - (2020), pp. 595-601. (Intervento presentato al convegno 2020 European Control Conference (ECC) tenutosi a San Pietroburgo) [10.23919/ECC51009.2020.9143837].
File allegati a questo prodotto
File Dimensione Formato  
DelliPriscoli_Traffic_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 329.83 kB
Formato Adobe PDF
329.83 kB Adobe PDF   Contatta l'autore
DelliPriscoli_preprint_Traffic_2020.pdf

accesso aperto

Note: https://ieeexplore.ieee.org/document/9143837
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 361.08 kB
Formato Adobe PDF
361.08 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1477977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 11
social impact