Adult neurogenesis initiated by neural stem cells (NSCs) contributes to brain homeostasis, damage repair, and cognition. Energy metabolism plays a pivotal role in neurogenic cell fate decisions regarding self-renewal, expansion and multilineage differentiation. NSCs need to fine-tune quiescence and proliferation/commitment to guarantee lifelong neurogenesis and avoid premature exhaustion. Accumulating evidence supports a model whereby calorie restriction or increased energy expenditure reinforce NSC quiescence and promote self-renewal. Conversely, growth/proliferation inputs and anabolic signals, although necessary for neurogenesis, deplete the NSCs pool in the long run. This framework incorporates the emerging neurogenic roles of nutrient-sensing signaling pathways, providing a rationale for the alarming connection between nutritional imbalances, metabolic disorders and accelerated brain aging.
Neural Stem Cells and Nutrients: Poised Between Quiescence and Exhaustion / Cavallucci, V.; Fidaleo, M.; Pani, G.. - In: TRENDS IN ENDOCRINOLOGY AND METABOLISM. - ISSN 1043-2760. - 27:11(2016), pp. 756-769. [10.1016/j.tem.2016.06.007]
Neural Stem Cells and Nutrients: Poised Between Quiescence and Exhaustion
Fidaleo M.;
2016
Abstract
Adult neurogenesis initiated by neural stem cells (NSCs) contributes to brain homeostasis, damage repair, and cognition. Energy metabolism plays a pivotal role in neurogenic cell fate decisions regarding self-renewal, expansion and multilineage differentiation. NSCs need to fine-tune quiescence and proliferation/commitment to guarantee lifelong neurogenesis and avoid premature exhaustion. Accumulating evidence supports a model whereby calorie restriction or increased energy expenditure reinforce NSC quiescence and promote self-renewal. Conversely, growth/proliferation inputs and anabolic signals, although necessary for neurogenesis, deplete the NSCs pool in the long run. This framework incorporates the emerging neurogenic roles of nutrient-sensing signaling pathways, providing a rationale for the alarming connection between nutritional imbalances, metabolic disorders and accelerated brain aging.File | Dimensione | Formato | |
---|---|---|---|
Cavallucci_Neural_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.