Given the large number of installed apps and the limited screen size of mobile devices, it is often tedious for users to search for the app they want to use. Although some mobile OSs provide categorization schemes that enhance the visibility of useful apps among those installed, the emerging category of homescreen apps aims to take one step further by automatically organizing the installed apps in a more intelligent and personalized way. In this paper, we study how to improve homescreen apps' usage experience through a prediction mechanism that allows to show to users which app she is going to use in the immediate future. The prediction technique is based on a set of features representing the real-time spatiotemporal contexts sensed by the homescreen app. We model the prediction of the next app as a classification problem and propose an effective personalized method to solve it that takes full advantage of human-engineered features and automatically derived features. Furthermore, we study how to solve the two naturally associated cold-start problems: app cold-start and user cold-start. We conduct large-scale experiments on log data obtained from Yahoo Aviate, showing that our approach can accurately predict the next app that a person is going to use.
Predicting The Next App That You Are Going To Use / Baeza-Yates, Ricardo; Jiang, Di; Silvestri, Fabrizio; Harrison, Beverly. - (2015). (Intervento presentato al convegno WSDM 2015 tenutosi a Shanghai China).
Predicting The Next App That You Are Going To Use
Fabrizio Silvestri;
2015
Abstract
Given the large number of installed apps and the limited screen size of mobile devices, it is often tedious for users to search for the app they want to use. Although some mobile OSs provide categorization schemes that enhance the visibility of useful apps among those installed, the emerging category of homescreen apps aims to take one step further by automatically organizing the installed apps in a more intelligent and personalized way. In this paper, we study how to improve homescreen apps' usage experience through a prediction mechanism that allows to show to users which app she is going to use in the immediate future. The prediction technique is based on a set of features representing the real-time spatiotemporal contexts sensed by the homescreen app. We model the prediction of the next app as a classification problem and propose an effective personalized method to solve it that takes full advantage of human-engineered features and automatically derived features. Furthermore, we study how to solve the two naturally associated cold-start problems: app cold-start and user cold-start. We conduct large-scale experiments on log data obtained from Yahoo Aviate, showing that our approach can accurately predict the next app that a person is going to use.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.