Sponsored search represents a major source of revenue for web search engines. The advertising model brings a unique possibility for advertisers to target direct user intent communicated through a search query, usually done by displaying their ads alongside organic search results for queries deemed relevant to their products or services. However, due to a large number of unique queries, it is particularly challenging for advertisers to identify all relevant queries. For this reason search engines often provide a service of advanced matching, which automatically finds additional relevant queries for advertisers to bid on. We present a novel advance match approach based on the idea of semantic embeddings of queries and ads. The embeddings were learned using a large data set of user search sessions, consisting of search queries, clicked ads and search links, while utilizing contextual information such as dwell time and skipped ads. To address the large-scale nature of our problem, both in terms of data and vocabulary size, we propose a novel distributed algorithm for training of the embeddings. Finally, we present an approach for overcoming a cold-start problem associated with new ads and queries. We report results of editorial evaluation and online tests on actual search traffic. The results show that our approach significantly outperforms baselines in terms of relevance, coverage and incremental revenue. Lastly, as part of this study, we open sourced query embeddings that can be used to advance the field.
Scalable Semantic Matching of Queries to Ads in Sponsored Search Advertising / Grbovic, Mihajlo; Djuric, Nemanja; Radosavljevic, Vladan; Silvestri, Fabrizio; Baeza-Yates, Ricardo; Feng, Andrew; Ordentlich, Erik; Yang, Lee; Owens, Gavin. - (2016). (Intervento presentato al convegno SIGIR 2016 tenutosi a Pisa, Italy).
Scalable Semantic Matching of Queries to Ads in Sponsored Search Advertising
Fabrizio Silvestri;
2016
Abstract
Sponsored search represents a major source of revenue for web search engines. The advertising model brings a unique possibility for advertisers to target direct user intent communicated through a search query, usually done by displaying their ads alongside organic search results for queries deemed relevant to their products or services. However, due to a large number of unique queries, it is particularly challenging for advertisers to identify all relevant queries. For this reason search engines often provide a service of advanced matching, which automatically finds additional relevant queries for advertisers to bid on. We present a novel advance match approach based on the idea of semantic embeddings of queries and ads. The embeddings were learned using a large data set of user search sessions, consisting of search queries, clicked ads and search links, while utilizing contextual information such as dwell time and skipped ads. To address the large-scale nature of our problem, both in terms of data and vocabulary size, we propose a novel distributed algorithm for training of the embeddings. Finally, we present an approach for overcoming a cold-start problem associated with new ads and queries. We report results of editorial evaluation and online tests on actual search traffic. The results show that our approach significantly outperforms baselines in terms of relevance, coverage and incremental revenue. Lastly, as part of this study, we open sourced query embeddings that can be used to advance the field.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.