Cerebrovascular disease is a significant cause of cognitive impairment leading to a reduction or loss of functioning, including social and occupational. The connection cause-effect between cerebrovascular disease and cerebral infarction was originally theorized by the studies from Newcastle-Upon-Tyne, England, in the 1960s, where vascular dementia (VaD) was defined as a disease originated from several infarctions that overcome a determined threshold. It differs from Alzheimer's disease (AD), although there are various overlaps in risk factors, symptomatology, the similarity of vascular lesions, and treatment benefits. Nevertheless, AD is one-half of all cases of dementia. Cognitive impairment and dementia (VCID) has recently been proposed to include different entities such as VaD, Vascular cognitive impairment, subcortical (ischemic) VaD, and vascular cognitive disorders. VaD is the most common cause of dementia after AD. Neuroimaging is an essential part of the workup of patients with cognitive decline and in those with suspected VCID it should be used to assess the extent, location, and type of vascular lesions. Computed tomography (CT) or structural magnetic resonance imaging (MRI) are usually used for the diagnosis of vascular diseases of the brain. However, images obtained from new hybrid devices could help the neurologist in the differential diagnosis between various neuropathological entities related to VCID. Single-photon emission computed tomography (SPECT) combined with CT or MRI and positron emission tomography (PET) combined with CT or MRI represent the future of neuroimaging tools as morphological and functional data can be provided simultaneously. New prospects have been developed such as hybrid PET/SPECT/CT, a high-performance prototype able to produce high-quality images but for now suitable only for small animals. Nowadays, PET/CT and PET/MRI are good performance and high-quality instruments, even if the magnetic field of MRI represents a limitation that affects the PET electronics and positron detection ability. SPECT/MRI delineates as a potential and tempting device. It could give us both functional and anatomical details, with the advantage of lack of extra ionizing radiation and high soft-tissue contrast, important features, and considerable auxiliary for differential diagnosis in the variegate word of vascular cognitive impairment. The aim of this review is to summarize the newest viewpoints in hybrid imaging in the diagnosis of VaD and to highlight pros and cons of each methodic.

Hybrid imaging of vascular cognitive impairment / Frantellizzi, V.; Conte, M.; De Vincentis, G.. - In: SEMINARS IN NUCLEAR MEDICINE. - ISSN 0001-2998. - 51:3(2021), pp. 286-295. [10.1053/j.semnuclmed.2020.12.006]

Hybrid imaging of vascular cognitive impairment

Frantellizzi V.
Primo
;
Conte M.
Penultimo
;
De Vincentis G.
Ultimo
2021

Abstract

Cerebrovascular disease is a significant cause of cognitive impairment leading to a reduction or loss of functioning, including social and occupational. The connection cause-effect between cerebrovascular disease and cerebral infarction was originally theorized by the studies from Newcastle-Upon-Tyne, England, in the 1960s, where vascular dementia (VaD) was defined as a disease originated from several infarctions that overcome a determined threshold. It differs from Alzheimer's disease (AD), although there are various overlaps in risk factors, symptomatology, the similarity of vascular lesions, and treatment benefits. Nevertheless, AD is one-half of all cases of dementia. Cognitive impairment and dementia (VCID) has recently been proposed to include different entities such as VaD, Vascular cognitive impairment, subcortical (ischemic) VaD, and vascular cognitive disorders. VaD is the most common cause of dementia after AD. Neuroimaging is an essential part of the workup of patients with cognitive decline and in those with suspected VCID it should be used to assess the extent, location, and type of vascular lesions. Computed tomography (CT) or structural magnetic resonance imaging (MRI) are usually used for the diagnosis of vascular diseases of the brain. However, images obtained from new hybrid devices could help the neurologist in the differential diagnosis between various neuropathological entities related to VCID. Single-photon emission computed tomography (SPECT) combined with CT or MRI and positron emission tomography (PET) combined with CT or MRI represent the future of neuroimaging tools as morphological and functional data can be provided simultaneously. New prospects have been developed such as hybrid PET/SPECT/CT, a high-performance prototype able to produce high-quality images but for now suitable only for small animals. Nowadays, PET/CT and PET/MRI are good performance and high-quality instruments, even if the magnetic field of MRI represents a limitation that affects the PET electronics and positron detection ability. SPECT/MRI delineates as a potential and tempting device. It could give us both functional and anatomical details, with the advantage of lack of extra ionizing radiation and high soft-tissue contrast, important features, and considerable auxiliary for differential diagnosis in the variegate word of vascular cognitive impairment. The aim of this review is to summarize the newest viewpoints in hybrid imaging in the diagnosis of VaD and to highlight pros and cons of each methodic.
2021
hybrid Imaging; vascular cognitive impairment; cerebrovascular disease; cerebral infarction; computed tomography (CT); structural magnetic resonance imaging (MRI)
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
Hybrid imaging of vascular cognitive impairment / Frantellizzi, V.; Conte, M.; De Vincentis, G.. - In: SEMINARS IN NUCLEAR MEDICINE. - ISSN 0001-2998. - 51:3(2021), pp. 286-295. [10.1053/j.semnuclmed.2020.12.006]
File allegati a questo prodotto
File Dimensione Formato  
Frantellizzi_Hybrid Imaging_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Contatta l'autore
Frantellizzi_Hybrid_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1475219
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact