In this paper, we first extend the diminishing stepsize method for nonconvex constrained problems presented in F. Facchinei, V. Kungurtsev, L. Lampariello and G. Scutari [Ghost penalties in nonconvex constrained optimization: Diminishing stepsizes and iteration complexity, To appear on Math. Oper. Res. 2020. Available at https://arxiv.org/abs/1709.03384.] to deal with equality constraints and a nonsmooth objective function of composite type. We then consider the particular case in which the constraints are convex and satisfy a standard constraint qualification and show that in this setting the algorithm can be considerably simplified, reducing the computational burden of each iteration.
Diminishing stepsize methods for nonconvex composite problems via ghost penalties: from the general to the convex regular constrained case / Facchinei, F.; Kungurtsev, V.; Lampariello, L.; Scutari, G.. - In: OPTIMIZATION METHODS & SOFTWARE. - ISSN 1055-6788. - 37:4(2022), pp. 1242-1268. [10.1080/10556788.2020.1854253]
Diminishing stepsize methods for nonconvex composite problems via ghost penalties: from the general to the convex regular constrained case
Facchinei F.
;
2022
Abstract
In this paper, we first extend the diminishing stepsize method for nonconvex constrained problems presented in F. Facchinei, V. Kungurtsev, L. Lampariello and G. Scutari [Ghost penalties in nonconvex constrained optimization: Diminishing stepsizes and iteration complexity, To appear on Math. Oper. Res. 2020. Available at https://arxiv.org/abs/1709.03384.] to deal with equality constraints and a nonsmooth objective function of composite type. We then consider the particular case in which the constraints are convex and satisfy a standard constraint qualification and show that in this setting the algorithm can be considerably simplified, reducing the computational burden of each iteration.File | Dimensione | Formato | |
---|---|---|---|
Facchinei_preprint_Diminishing-stepsize-methods_2020.pdf
accesso aperto
Note: https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1854253
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
308 kB
Formato
Adobe PDF
|
308 kB | Adobe PDF | |
Facchinei_Diminishing-stepsize-methods_2020.pdf
solo gestori archivio
Note: Article in press
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Contatta l'autore |
Facchinei_Diminishing_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.